
https://www.pearson.de/9780136823551

A Tour of C++

Third Edition

https://www.pearson.de/9780136823551

Section 6.4 Operator Overloading 81

Alternatively, most operators can be defined as free-standing functions:

Matrix operator+(const Matrix& m1, const Matrix& m2); // assign m1 to m2 and return the sum

It is conventional to define operators with symmetric operands as free-standing functions so that

both operands are treated identically. To gain good performance from returning a potentially large

object, such as a Matrix, we rely on move semantics (§6.2.2).

6.5 Conventional Operations

Some operations have conventional meanings when defined for a type. These conventional mean-

ings are often assumed by programmers and libraries (notably, the standard library), so it is wise to

conform to them when designing new types for which the operations make sense.

• Comparisons: ==, !=, <, <=, >, >=, and <=> (§6.5.1)

• Container operations: size(), begin(), and end() (§6.5.2)

• Iterators and ‘‘smart pointers’’: −>, ∗, [], ++, −−, +, −, +=, and −= (§13.3, §15.2.1)

• Function objects: () (§7.3.2)

• Input and output operations: >> and << (§6.5.4)

• swap() (§6.5.5)

• Hash functions: hash<> (§6.5.6)

6.5.1 Comparisons (Relational Operators)

The meaning of the equality comparisons (== and !=) is closely related to copying. After a copy,

the copies should compare equal:

X a = something;

X b = a;

assert(a==b); // if a!=b here, something is very odd (§4.5)

When defining ==, also define != and make sure that a!=b means !(a==b).

Similarly, if you define <, also define <=, >, >= to make sure that the usual equivalences hold:

• a<=b means (a<b)||(a==b) and !(b<a).

• a>b means b<a.

• a>=b means (a>b)||(a==b) and !(a<b).

To give identical treatment to both operands of a binary operator, such as ==, it is best defined as a

free-standing function in the namespace of its class. For example:

namespace NX {

class X {

// ...

};

bool operator==(const X&, const X&);

// ...

};

The ‘‘spaceship operator,’’ <=> is a law onto itself; its rules differ from those for all other operators.

In particular, by defining the default <=> the other relational operators are implicitly defined:

https://www.pearson.de/9780136823551

82 Essential Operations Chapter 6

class R {

// ...

auto operator<=>(const R& a) const = default;

};

void user(R r1, R r2)

{

bool b1 = (r1<=>r2) == 0; // r1==r2

bool b2 = (r1<=>r2) < 0; // r1<r2

bool b3 = (r1<=>r2) > 0; // r1>r2

bool b4 = (r1==r2);

bool b5 = (r1<r2);

}

Like C’s strcmp(), <=> implements a three-way-comparison. A negative return value means less-

than, 0 means equal, and a positive value means greater-than.

If <=> is defined as non-default, == is not implicitly defined, but < and the other relational opera-

tors are! For example:

struct R2 {

int m;

auto operator<=>(const R2& a) const { return a.m == m ? 0 : a.m < m ? −1 : 1; }

};

Here, I used the expression form of the if-statement : p?x:y is an expression that evaluates the con-

dition p and if it is true, the value of the ?: expression is x otherwise y.

void user(R2 r1, R2 r2)

{

bool b4 = (r1==r2); // error: no non-default ==

bool b5 = (r1<r2); // OK

}

This leads to this pattern of definition for nontrivial types:

struct R3 { /* ... */ };

auto operator<=>(const R3& a,const R3& b) { /* ... */ }

bool operator==(const R3& a, const R3& b) { /* ... */ }

Most standard-library types, such as string and vector, follow that pattern. The reason is that if a

type has more than one element taking part in a comparison, the default <=> examines them one at a

time yielding a lexicographical order. In such case, it is often worthwhile to provide a separate

optimized == in addition because <=> has to examine all elements to determine all three alternatives.

Consider comparing character strings:

https://www.pearson.de/9780136823551

Section 6.5.1 Comparisons (Relational Operators) 83

string s1 = "asdfghjkl";

string s2 = "asdfghjk";

bool b1 = s1==s2; // false

bool b2 = (s1<=>s2)==0; // false

Using a conventional == we find that the strings are not equal by looking at the number of charac-

ters. Using <=>, we have to read all the characters of s2 to find that it is less than s1 and therefore

not equal.

There are many more details to operator <=>, but those are primarily of interest to advanced

implementors of library facilities concerned with comparisons and sorting beyond the scope of this

book. Older code does not use <=>.

6.5.2 Container Operations

Unless there is a really good reason not to, design containers in the style of the standard-library

containers (Chapter 12). In particular, make the container resource safe by implementing it as a

handle with appropriate essential operations (§6.1.1, §6.2).

The standard-library containers all know their number of elements and we can obtain it by call-

ing size(). For example:

for (size_t i = 0; i!=c.size(); ++i) // size_t is the name of the type returned by a standard-library size()

c[i] = 0;

However, rather than traversing containers using indices from 0 to size(), the standard algorithms

(Chapter 13) rely on the notion of sequences delimited by pairs of iterators:

for (auto p = c.begin(); p!=c.end(); ++p)

∗p = 0;

Here, c.begin() is an iterator pointing to the first element of c and c.end() points one-beyond-the-last

element of c. Like pointers, iterators support ++ to move to the next element and ∗ to access the

value of the pointed-to element.

These begin() and end() functions are also used by the implementation of the range-for, so we

can simplify loops over a range:

for (auto& x : c)

x= 0;

Iterators are used to pass sequences to standard-library algorithms. For example:

sort(v.begin(),v.end());

This iterator model (§13.3) allows for great generality and efficiency. For details and more con-

tainer operations, see Chapter 12 and Chapter 13.

The begin() and end() can also be defined as free-standing functions; see §7.2. The versions of

begin() and end() for const containers are called cbegin() and cend().

https://www.pearson.de/9780136823551

84 Essential Operations Chapter 6

6.5.3 Iterators and ‘‘smart pointers’’

User-defined iterators (§13.3) and ‘‘smart pointers’’ (§15.2.1) implement the operators and aspects

of a pointer desired for their purpose and often add semantics as needed.

• Access: ∗, −> (for a class), and [] (for a container)

• Iteration/navigation: ++ (forward), −− (backward) , +=, −=, +, and −

• Copy and/or move: =

6.5.4 Input and Output Operations

For pairs of integers, << means left-shift and >> means right-shift. However, for iostreams, they are

the output and input operators, respectively (§1.8, Chapter 11). For details and more I/O opera-

tions, see Chapter 11.

6.5.5 swap()

Many algorithms, most notably sort(), use a swap() function that exchanges the values of two

objects. Such algorithms generally assume that swap() is very fast and doesn’t throw an exception.

The standard-library provides a std::swap(a,b) implemented as three move operations (§16.6). If

you design a type that is expensive to copy and could plausibly be swapped (e.g., by a sort func-

tion), then give it move operations or a swap() or both. Note that the standard-library containers

(Chapter 12) and string (§10.2.1) have fast move operations.

6.5.6 hash<>

The standard-library unordered_map<K,V> is a hash table with K as the key type and V as the value

type (§12.6). To use a type X as a key, we must define hash<X>. For common types, such as

std::string, the standard library defines hash<> for us.

6.6 User-Defined Literals

One purpose of classes was to enable the programmer to design and implement types to closely

mimic built-in types. Constructors provide initialization that equals or exceeds the flexibility and

efficiency of built-in type initialization, but for built-in types, we have literals:

• 123 is an int.

• 0xFF00u is an unsigned int.

• 123.456 is a double.

• "Surprise!" is a const char[10].

It can be useful to provide such literals for a user-defined type also. This is done by defining the

meaning of a suitable suffix to a literal, so we can get

• "Surprise!"s is a std::string.

• 123s is seconds.

• 12.7i is imaginary so that 12.7i+47 is a complex number (i.e., {47,12.7}).

In particular, we can get these examples from the standard library by using suitable headers and

namespaces:

https://www.pearson.de/9780136823551

Section 6.6 User-Defined Literals 85

Standard-Library Suffixes for Literals

<chrono> std::literals::chrono_literals h, min, s, ms, us, ns

<string> std::literals::string_literals s

<string_view> std::literals::string_literals sv

<complex> std::literals::complex_literals i, il, if

Literals with user-defined suffixes are called user-defined literals or UDLs. Such literals are

defined using literal operators. A literal operator converts a literal of its argument type, followed

by a subscript, into its return type. For example, the i for imaginary suffix might be implemented

like this:

constexpr complex<double> operator""i(long double arg) // imaginary literal

{

return {0,arg};

}

Here

• The operator"" indicates that we are defining a literal operator.

• The i after the literal indicator, "", is the suffix to which the operator gives a meaning.

• The argument type, long double, indicates that the suffix (i) is being defined for a floating-

point literal.

• The return type, complex<double>, specifies the type of the resulting literal.

Given that, we can write

complex<double> z = 2.7182818+6.283185i;

The implementation of the i suffix and the + are both constexpr, so the computation of z’s value is

done at compile time.

6.7 Advice

[1] Control construction, copy, move, and destruction of objects; §6.1.1; [CG: R.1].

[2] Design constructors, assignments, and the destructor as a matched set of operations; §6.1.1;

[CG: C.22].

[3] Define all essential operations or none; §6.1.1; [CG: C.21].

[4] If a default constructor, assignment, or destructor is appropriate, let the compiler generate it;

§6.1.1; [CG: C.20].

[5] If a class has a pointer member, consider if it needs a user-defined or deleted destructor, copy

and move; §6.1.1; [CG: C.32] [CG: C.33].

[6] If a class has a user-defined destructor, it probably needs user-defined or deleted copy and

move; §6.2.1.

[7] By default, declare single-argument constructors explicit; §6.1.2; [CG: C.46].

[8] If a class member has a reasonable default value, provide it as a data member initializer;

§6.1.3; [CG: C.48].

[9] Redefine or prohibit copying if the default is not appropriate for a type; §6.1.1; [CG: C.61].

https://www.pearson.de/9780136823551

86 Essential Operations Chapter 6

[10] Return containers by value (relying on copy elision and move for efficiency); §6.2.2; [CG:

F.20].

[11] Avoid explicit use of std::copy(); §16.6; [CG: ES.56].

[12] For large operands, use const reference argument types; §6.2.2; [CG: F.16].

[13] Provide strong resource safety; that is, never leak anything that you think of as a resource;

§6.3; [CG: R.1].

[14] If a class is a resource handle, it needs a user-defined constructor, a destructor, and non-

default copy operations; §6.3; [CG: R.1].

[15] Manage all resources – memory and non-memory – resources using RAII; §6.3; [CG: R.1].

[16] Overload operations to mimic conventional usage; §6.5; [CG: C.160].

[17] If you overload an operator, define all operations that conventionally work together; §6.1.1,

§6.5.

[18] If you define <=> for a type as non-default, also define ==; §6.5.1.

[19] Follow the standard-library container design; §6.5.2; [CG: C.100].

https://www.pearson.de/9780136823551

