Contents

1	Introduction					
	1.1	Motivating Examples				
	1.2	Book Structure	4			
	1.3	Useful Notation	9			
2	Orde	Relations and Ordering Cones 1	1			
	2.1	Order Relations 1	1			
	2.2	Cone Properties Related to the Topology and the Order 1	7			
	2.3	Convexity Notions for Sets and Set-Valued Maps 2	2			
	2.4	Solution Concepts in Vector Optimization	8			
	2.5	Vector Optimization Problems with Variable Ordering				
		Structure	3			
	2.6	Solution Concepts in Set-Valued Optimization 4	5			
		2.6.1 Solution Concepts Based on Vector Approach 4	5			
		2.6.2 Solution Concepts Based on Set Approach 4	8			
		2.6.3 Solution Concepts Based on Lattice Structure	5			
		2.6.4 The Embedding Approach by Kuroiwa	5			
		2.6.5 Solution Concepts with Respect to Abstract				
		Preference Relations	7			
		2.6.6 Set-Valued Optimization Problems				
		with Variable Ordering Structure	0			
		2.6.7 Approximate Solutions of Set-Valued				
		Optimization Problems	3			
	2.7	Relationships Between Solution Concepts	4			
3	Continuity and Differentiability					
	3.1	Continuity Notions for Set-Valued Maps 7				
	3.2	Continuity Properties of Set-Valued Maps Under				
		Convexity Assumptions	0			
	3.3	Lipschitz Properties for Single-Valued and Set-Valued Maps 9				
	3.4	Clarke's Normal Cone and Subdifferential 10				

xiii

	3.5	Limitin	g Cones and Generalized Differentiability	103			
	3.6	Approx	imate Cones and Generalized Differentiability	107			
4	Tange	igent Cones and Tangent Sets					
	4.1	First-O	rder Tangent Cones	110			
		4.1.1	The Radial Tangent Cone and the Feasible				
			Tangent Cone	110			
		4.1.2	The Contingent Cone and the Interiorly				
			Contingent Cone	112			
		4.1.3	The Adjacent Cone and the Interiorly				
			Adjacent Cone	120			
	4.2	Modifie	ed First-Order Tangent Cones	123			
		4.2.1	The Modified Radial and the Modified				
			Feasible Tangent Cones	124			
		4.2.2	The Modified Contingent and the Modified				
			Interiorly Contingent Cones	124			
		4.2.3	The Modified Adjacent and the Modified				
			Interiorly Adjacent Cones	126			
	4.3	Miscell	aneous Properties of First-Order Tangent Cones	129			
	4.4	First-O	rder Tangent Cones on Convex Sets	132			
		4.4.1	Connections Among First-Order Tangent				
		•	Cones on Convex Sets	132			
		4.4.2	Properties of First-Order Tangent Cones				
			on Convex Sets	137			
	4.5	First-O	rder Local Cone Approximation	143			
	4.6	Convex	Subcones of the Contingent Cone	147			
	4.7	First-O	rder Inversion Theorems and Intersection Formulas	156			
	4.8	Expressions of the Contingent Cone on Some					
		Constra	aint Sets	161			
	4.9	Second	-Order Tangent Sets	169			
		4.9.1	Second-Order Radial Tangent Set				
			and Second-Order Feasible Tangent Set	1 70			
		4.9.2	Second-Order Contingent Set				
			and Second-Order Interiorly Contingent Set	170			
		4.9.3	Second-Order Adjacent Set and				
			Second-Order Interiorly Adjacent Set	173			
	4.10	Genera	lized Second-Order Tangent Sets	175			
	4.11	Second	-Order Asymptotic Tangent Cones	181			
		4.11.1	Second-Order Asymptotic Feasible Tangent				
			Cone and Second-Order Asymptotic Radial				
			Tangent Cone	182			
		4.11.2	Second-Order Asymptotic Contingent Cone				
			and Second-Order Asymptotic Interiorly				
			Contingent Cone	183			

Contents

		4.11.3	Second-Order Asymptotic Adjacent Cone			
			and Second-Order Asymptotic Interiorly			
			Adjacent Cone	185		
	4.12	Miscell	aneous Properties of Second-Order Tangent			
		Sets and	d Second-Order Asymptotic Tangent Cones	187		
	4.13	Second-Order Inversion Theorems				
	4.14	Express	sions of the Second-Order Contingent Set			
		on Spec	cific Constraints	197		
	4.15	Miscell	aneous Second-Order Tangent Cones	202		
		4.15.1	Second-Order Tangent Cones of Ledzewicz			
			and Schaettler	202		
		4.15.2	Projective Tangent Cones of Second-Order	204		
		4.15.3	Second-Order Tangent Cone of N. Pavel	206		
		4.15.4	Connections Among the Second-Order			
			Tangent Cones	207		
	4.16	Second	-Order Local Approximation	207		
	4.17	Higher-	Order Tangent Cones and Tangent Sets	210		
5	Nonco	nvex Sep	paration Theorems	213		
	5.1	Separat	ing Functions and Examples	213		
	5.2	Nonline	ear Separation	217		
		5.2.1	Construction of Scalarizing Functionals	217		
		5.2.2	Properties of Scalarization Functions	219		
		5.2.3	Continuity Properties	224		
		5.2.4	Lipschitz Properties	225		
		5.2.5	The Formula for the Conjugate			
			and Subdifferential of φ_A for A Convex	231		
	5.3	Scalariz	ing Functionals by Hiriart-Urruty and Zaffaroni	232		
	5.4	Charact	terization of Solutions of Set-Valued			
		Optimiz	zation Problems by Means of Nonlinear			
		Scalariz	zing Functionals	236		
		5.4.1	An Extension of the Functional φ_{4}	236		
		5.4.2	Characterization of Solutions of Set-Valued			
			Optimization Problems with Lower Set Less			
			Order Relation \prec^l_{a} by Scalarization	240		
	5.5	The Ex	tremal Principle	244		
6	Hahn-Banach Type Theorems					
-	6.1	The Ha	hn-Banach-Kantorovich Theorem	250		
	6.2	Classic	al Separation Theorems for Convex Sets	258		
	6.3	The Co	re Convex Topology	261		
	64	Yang's	Generalization of the Habn–Banach Theorem	264		
	65	A Sufficient Condition for the Convexity of \mathbb{R} , A 271				
	0.5	23 Juin		211		

.

7	Conju	gates and Subdifferentials	275			
	7.1	The Strong Conjugate and Subdifferential	275			
	7.2	The Weak Subdifferential	288			
	7.3	Subdifferentials Corresponding to Henig Proper Efficiency	296			
	7.4	Exact Formulas for the Subdifferential of the Sum				
		and the Composition	298			
8	Dualit	v	307			
	8.1	Duality Assertions for Set-Valued Problems Based				
		on Vector Approach 30				
		8.1.1 Conjugate Duality for Set-Valued Problems				
		Based on Vector Approach	308			
		8.1.2 Lagrange Duality for Set-Valued				
		Optimization Problems Based on Vector Approach	313			
	8.2	Duality Assertions for Set-Valued Problems Based				
		on Set Approach	317			
	8.3	Duality Assertions for Set-Valued Problems Based				
		on Lattice Structure	322			
		8.3.1 Conjugate Duality for <i>F</i> -Valued Problems	323			
		8.3.2 Lagrange Duality for <i>I</i> -Valued Problems	326			
	8.4	Comparison of Different Approaches to Duality				
		in Set-Valued Optimization	338			
		8.4.1 Lagrange Duality	339			
		8.4.2 Subdifferentials and Stability	341			
		8.4.3 Duality Statements with Operators as Dual Variables	345			
9	Existe	nce Results for Minimal Points	349			
-	9.1	Preliminary Notions and Results Concerning				
		Transitive Relations	349			
	9.2	Existence of Minimal Elements with Respect				
-		to Transitive Relations	352			
	9.3	Existence of Minimal Points with Respect to Cones	355			
	9.4	Types of Convex Cones and Compactness				
		with Respect to Cones				
	9.5	Existence of Optimal Solutions for Vector and Set				
		Optimization Problems	362			
10	Ekelar	nd Variational Principle	360			
10	10.1	Preliminary Notions and Results	369			
	10.1	Minimal Points in Product Spaces	372			
	10.2	Minimal Points in Product Spaces of Isac_Tammer's Type	381			
	10.5	Fkeland's Variational Principles of Ha's Type	384			
	10.4	Excland's Variational Principles of Ha's Type	301			
	10.5	EVP Type Results	301			
	10.0	Fror Bounds	304			
	10.7 Entri Dounds					

•

11	Deriva	tives and	d Epiderivatives of Set-Valued Maps	399	
	11.1	Conting	gent Derivatives of Set-Valued Maps	400	
		11.1.1	Miscellaneous Graphical Derivatives		
			of Set-valued Maps	407	
		11.1.2	Convexity Characterization Using		
			Contingent Derivatives	414	
		11.1.3	Proto-Differentiability,		
			Semi-Differentiability, and Related		
			Concepts	416	
		11.1.4	Weak Contingent Derivatives of Set-Valued Maps	422	
		11.1.5	A Lyusternik-Type Theorem Using		
			Contingent Derivatives	426	
	11.2	Calculu	is Rules for Derivatives of Set-Valued Maps	428	
		11.2.1	Calculus Rules by a Direct Approach	429	
		11.2.2	Derivative Rules by Using Calculus		
			of Tangent Cones	432	
	11.3	Conting	gently C-Absorbing Maps	437	
	11.4	Epideri	vatives of Set-Valued Maps	445	
		11.4.1	Contingent Epiderivatives of Set-Valued		
			Maps with Images in \mathbb{R}	446	
		11.4.2	Contingent Epiderivatives in General Spaces	452	
		11.4.3	Existence Theorems for Contingent Epiderivatives	457	
		11.4.4	Variational Characterization		
			of the Contingent Epiderivatives	464	
	11.5	Genera	lized Contingent Epiderivatives of Set-Valued Maps	470	
		11.5.1	Existence Theorems for Generalized		
			Contingent Epiderivatives	474	
		11.5.2	Characterizations of Generalized Contingent		
			Epiderivatives	478	
	11.6	Calculu	as Rules for Contingent Epiderivatives	482	
	11.7	Second-Order Derivatives of Set-Valued Maps 4			
	11.8	Calculu	as Rules for Second-Order Contingent Derivatives	500	
	11.9	Second	-Order Epiderivatives of Set-Valued Maps	504	
12	Optimality Conditions in Set-Valued Optimization				
	12.1	First-O	rder Optimality Conditions by the Direct Approach	512	
12.2		First-O	rder Optimality Conditions		
		by the Dubovitskii-Milyutin Approach			
		12.2.1	Necessary Optimality Conditions		
			by the Dubovitskii-Milyutin Approach	523	
		12.2.2	Inverse Images and Subgradients		
			of Set-Valued Maps	527	
		12.2.3	Separation Theorems		
			and the Dubovitskii-Milyutin Lemma	534	

		12.2.4	Lagrange Multiplier Rules	
			by the Dubovitskii-Milyutin Approach	537
	12.3	Sufficie	ent Optimality Conditions in Set-Valued Optimization	542
		12.3.1	Sufficient Optimality Conditions Under	
			Convexity and Quasi-Convexity	542
		12.3.2	Sufficient Optimality Conditions Under	
			Paraconvexity	545
		12.3.3	Sufficient Optimality Conditions Under	
			Semidifferentiability	549
	12.4	Second	-Order Optimality Conditions in Set-Valued	
		Optimi	zation	549
		12.4.1	Second-Order Optimality Conditions	
			by the Dubovitskii-Milyutin Approach	550
		12.4.2	Second-Order Optimality Conditions	
			by the Direct Approach	554
	12.5	Genera	lized Dubovitskii-Milvutin Approach	
		in Set-V	Valued Optimization	557
		12.5.1	A Separation Theorem for Multiple Closed	
		1=1011	and Open Cones	559
		12.5.2	First-Order Generalized	
		12:012	Dubovitskii-Milvutin Approach	562
		12.5.3	Second-Order Generalized	
		12.0.0	Dubovitskii-Milyutin Approach	567
	12.6	Set-Val	used Optimization Problems with a Variable	007
	12.0	Order S	Structure	568
	127	Ontima	lity Conditions for O-Minimizers	200
	12.7	in Set-V	Valued Optimization	572
		1271	Ontimality Conditions for O-Minimizers	572
		12.7.1	Using Radial Derivatives	572
		1272	Optimality Conditions for O-Minimizers	512
		12.7.2	Using Coderivatives	574
	12.8	Lagran	as Multiplier Pules Based on Limiting Subdifferential	578
	12.0	Nacass	ary Conditions for Approximate Solutions	578
	12.9	of Set '	Valued Optimization Problems	501
	12.10	Nococo	and Sufficient Conditions for Solution	571
	12.10	Concess	ary and Sumclein Conditions for Solution	504
	10.11	Nessee	and Conditions for Solution Concents	374
	12.11	inecess	ary Conditions for Solution Concepts	508
	10.10		bists and Corresponding Stability Desults	570
	12.12	KKI-P	oints and Corresponding Stability Results	000
13	Sensiti	vity An	alysis in Set-Valued Optimization	
	and Ve	ctor Va	riational Inequalities	605
	13.1	First O	rder Sensitivity Analysis in Set-Valued Optimization	606
	13.2	Second	l Order Sensitivity Analysis in Set-Valued	
		Optimi	zation	613

	13.3	Sensitiv	vity Analysis in Set-Valued Optimization	(22	
	13.4	Using C Sensitiv	vity Analysis for Vector Variational Inequalities	62 <i>3</i> 634	
14	Nume	rical Met	thods for Solving Set-Valued		
	Optim	ization F	Problems	645	
	14.1	A Newt	ton Method for Set-Valued Maps	645	
	14.2	An Alg	orithm to Solve Polyhedral Convex Set-Valued		
		Optimiz	zation Problems	651	
		14.2.1	Formulation of the Polyhedral Convex		
			Set-Valued Optimization Problem	653	
		14.2.2	An Algorithm for Solving Polyhedral		
			Convex Set-Valued Optimization Problems	655	
		14.2.3	Properties of the Algorithm	658	
15	A			662	
15		auons		003	
	15.1	Set-var	Earshal Duality for Vestor Optimization	003	
		15.1.1	Prencher Duality for vector Optimization		
			Froblems Using Corresponding Results	((7	
		1510	for \mathcal{F} - valued Problems	007	
		15.1.2	Lagrange Duality for vector Optimization	(70	
		15.0	Problems Based on Results for <i>9</i> -Valued Problems	670	
		15.1.3	Duality Assertions for Linear Vector		
			Optimization Based on Lattice Approach	677	
		15.1.4	Further Set-Valued Approaches to Duality	<i>c</i> .	
			in Linear Vector Optimization	682	
	15.2	Applica	ations in Mathematical Finance	696	
	15.3	Set-Val	ued Optimization in Welfare Economics	701	
	15.4	Robust	ness for Vector-Valued Optimization Problems	706	
		15.4.1	$\leq_{\mathcal{C}}^{u}$ -Robustness	710	
		15.4.2	\leq_{C}^{\prime} -Robustness	720	
		15.4.3	\leq_C^s -Robustness	722	
		15.4.4	Algorithms for Solving Special Classes		
			of Set-Valued Optimization Problems	724	
Ap	pendix .	•••••		727	
Re	ferences	.		733	
Index					