Table of Contents

1	Intro	duction	11
	1.1	Thesis motivation and objectives	11
	1.2	Thesis outline	13
2	Fund	amentals	17
	2.1	Basics of silicon solar cells	17
	2.1.1 nPEF	Device structure and working principle of front-junction T silicon solar cells	17
	2.1.2	Current-voltage characteristic of silicon solar cells	19
	2.1.3	Carrier recombination in crystalline silicon	21
	2.1.4 chara	Impact of electrical and optical losses on current-voltage cteristic	24
	2.2	Rear-side metallization of silicon solar cells	27
	2.2.1	Review and state of the art	27
	2.2.2 physi	Novel cell design featuring screen-printed front side and cal vapor deposited rear-side metallization	29
	2.2.3	Physical vapor deposition of metal layers	31
	2.3	Rear-side metallization related losses	34
	2.3.1 metal	Ohmic losses due to lateral resistance of rear-side lization	34
	2.3.2 metal	Ohmic losses due to contact resistance of rear-side lization	40

	2.3.3 metall	Optical losses due to parasitic absorption in rear-side ization
	2.3.4	Rear-side metallization related recombination losses
	2.4 industria	Requirements of rear-side metallization for double-side contacted al silicon solar cells
	2.5 PERT s	Why aluminum-based PVD rear-side metallization for <i>n</i> -type olar cells?
3	Sputte	ering deposition processes of the investigated metal layers
	3.1	Oerlikon SOLARIS 6 multi-layer sputtering deposition system 51
	3.2	Sputtering-deposition processes of the metal layers
	3.2.1 depos	Process parameters and deposition rate of aluminum sputtering ition
	3.2.2	Sputtering-deposition processes of the Al-Si (1 at% Si) layers55
	3.2.3	Sputtering deposition processes of the silver layers
	3.2.4	Sputtering deposition processes of the titanium layers
	3.2.5 depos	Maximum substrate temperature during aluminum sputtering ition
	3.3	Summary and conclusion
4	Conta	ect formation process of aluminum-based metallization
	4.1 Al/Si-co	Theoretical background on the contact-formation process of ontacts
	4.2	Characterization of contact formation process
	4.3	Ti/Al stack against aluminum spiking
	4.3.1	Theoretical background of titanium as a spiking barrier
	4.3.2	SEM structural investigations of Ti/Al-stack73

	4.4	Novel Al-Si/Al-stack against Al-spiking75
	4.4.1	Process simulation of Al/Al-Si/Si system76
	4.4.2	SEM structural investigations of Al-Si/Al stack79
	4.5	Summary and conclusion
5	Speci	fic contact resistance evaluation
	5.1 highly d	Determination of specific contact resistance of point contacts on oped silicon
	5.1.1	Sample structure and experimental setup
	5.1.2 conta	Analytical model to extract the contact resistance of the point ct from the measured data
	5.1.3 conta	Circular transmission line model to determine rear specific ct resistance $ ho_{c,rear}$
	5.1.4 device	Verification of the analytical approximation with 3D numerical e simulations
	5.1.5 resista	Error contributions of wafer thickness and resistivity, BSF sheet ance and contact radius
	5.2	Specific contact resistance experimental results
	5.2.1	Specific contact-resistance results on lowly doped u^+ -BSF99
	5.2.2	Specific contact-resistance results on highly doped u^+ -BSF101
	5.2.3 previo	Comparison of the experimentally obtained ρ_{crear} data with busly published ones
	5.2.4	Summary and conclusion103
6	Detai	led optical study on rear-side reflectors for nPERT solar cells107
	6.1	Theoretical background107
	6.1.1	Optical properties of dielectric materials and metals107

6.1.2 and fi	Light paths for PERT solar cell with regular upright pyramids sustrated total reflection114
6.1.3 calcul	Reflectance of silicon/passivation/metallization-system ated with the matrix method119
6.2 samples	Numerical 3D-device-simulations and experiments on reflection
6.2.1 config	One-layer Al-metallization with various passivation gurations
6.2.2 spikin	Multi-layer Al-based metallization with first Al-Si layer as a ng barrier
6.2.3 resista	Multi-layer Al-based metallization with first Ti layer as a low ance contacting metal
6.2.4	One-layer Ag-metallization on various passivation layers140
6.2.5 IR ref	Multi-layer Al-based metallization with first thin Ag layer as an flector
6.2.6	Comparison of the optimized rear-side reflectors146
6.3	Summary and conclusion
7 Plasm	na-induced damage of sputtering deposition of metal layers
7.1	Experimental approach150
7.1.1	Microwave photoconductance decay (MWPCD)151
7.1.2	Corona Oxide Characterization of Semiconductor (COCOS) 153
7.2	Experimental results
7.2.1 Si/Si	Impact of aluminum sputtering on the electrical properties of D ₂ interface
7.2.2 interf	Impact of Al sputtering on the electrical properties of Si/Al ₂ O ₃ ace

7.2.3 Impact of Al sputtering on the electrical properties of Si/SiN_x
interface
7.3 Summary and conclusion160
8 Cell results of front-junction nPERT solar cells
8.1 One-layer aluminum rear-side metallization (Batch-1 to Batch-4)
8.1.1 Batch-1: Influence of rear-side capping SiO ₂ on current generation
8.1.2 Batch-2: Influence of rear doping profile and thermal stress on cell performance
8.1.3 Batch-3: Influence of rear contact spacing on current-voltage characteristic
8.1.4 Batch-4: Influence of aluminum layer thickness on series ohmic losses
8.2 Multi-layer aluminum-based rear-side metallization (Batch 5) 175
8.3 Summary and conclusion177
9 Thesis summary and outlook
10 Deutsche Zusammenfassung (German summary)185
References
Own publications
Acknowledgments