Contents

Preface							
1	Tria	Triangulations in Mathematics					
	1.1	Combinatorics and triangulations	2				
	1.2	Optimization and triangulations	13				
	1.3	Algebra and triangulations	21				
	1.4	The rest of this book	34				
		Exercises	38				
2	Cont	figurations, Triangulations, Subdivisions, and Flips	43				
	2.1	The official languages in the land of triangulations	43				
		2.1.1 Polyhedra and cones	43				
		2.1.2 Point configurations	47				
		2.1.3 Geometry of point configurations	50				
	2.2	A closer look at the definition of triangulation	53				
		2.2.1 There is always a triangulation	54				
		2.2.2 A famous example: the Delaunay triangulation	56				
		2.2.3 Regular subdivisions and their structure	59				
	2.3	A bullet-proof definition of polyhedral subdivisions	62				
		2.3.1 Polyhedral subdivisions	62				
		2.3.2 Regular subdivisions, again	67				
	2.4	Flips and the graph of triangulations	72				
		2.4.1 Corank-one configurations and circuits	72				
		2.4.2 Almost-triangulations and flips	74				
	2.5	Vector configurations and their triangulations	76				
		2.5.1 Vector configurations	77				
		2.5.2 Polyhedral subdivisions of vector configurations	79				
		2.5.3 Regular subdivisions of vector configurations	81				
	2.6	Triangulations as simplicial complexes	83				
		2.6.1 Simplicial complexes	83				
		2.6.2 The <i>f</i> -vector of a simplicial complexes	84				
		2.6.3 Linear constraints on the <i>f</i> -vector	87				
		Exercises	90				
3	Life in Two Dimensions						
	3.1	Some basic properties	93				
	3.2	A few examples of triangulations in the plane	95				
		3.2.1 Placing and pulling triangulations	96				
		3.2.2 Delaunay triangulations	97				
			102				
	3.3		107				
	-		107				

		3.3.2 The maximum possible number of triangulations	112
		3.3.3 The minimum possible number of triangulations	
		3.3.4 The poset of subdivisions	
	3.4	Flips in triangulations	
		3.4.1 All triangulations of a point set in the plane are connected by flips	
		3.4.2 Effective enumeration of triangulations	
		3.4.3 Further properties of the graph of flips	
	3.5	Pseudo-triangulations	
	3.6	Life in three dimensions	
		3.6.1 The number of tetrahedra	
		3.6.2 Monotone flipping does not (always) work	
		3.6.3 The number of flips	
	3.7	Notes and References	
		Exercises	
4	A To	ool Box	149
	4.1	Combinatorics of configurations	149
		4.1.1 Dependences, circuits, and the intersection property	150
		4.1.2 Evaluations, cocircuits, and the union property	
		4.1.3 Gale transforms and the duality between circuits and cocircuits	
	4.2	Manipulating vector configurations	165
		4.2.1 Pyramids and joins	165
		4.2.2 Prisms and products	167
		4.2.3 Deletion	169
		4.2.4 Contraction	171
		4.2.5 One-point suspension	175
	4.3	Generating polyhedral subdivisions	178
		4.3.1 The placing (or pushing) triangulation	
		4.3.2 The pulling triangulation	181
		4.3.3 Lexicographic triangulations	182
		4.3.4 Pushing and pulling refinements	183
	4.4	Two equivalent characterizations of flips	185
		4.4.1 Flips via circuits	186
		4.4.2 Flips via walls	188
	4.5	More characterizations of triangulations and subdivisions	190
		4.5.1 Geometric characterizations	191
		4.5.2 Combinatorial characterizations	203
		Exercises	207
5	Regi	ular Triangulations and Secondary Polytopes	209
	5.1	The secondary polytope	210
		5.1.1 Motivating examples	210
		5.1.2 Statement of the main theorem	214
		5.1.3 Dimension and affine span of the secondary polytope	217
	5.2	The normal fan of the secondary polytope	221
		5.2.1 Secondary cones	221
		5.2.2 The secondary fan	225
		5.2.3 Proof of the main theorem	229

Contents

	5.3	Structure of the secondary polytope	233
		5.3.1 Edges of the secondary polytope	233
		5.3.2 Monotone paths on the secondary polytope	236
		5.3.3 Facets of the secondary polytope	241
	5.4	Chambers	243
		5.4.1 The chamber fan	243
		5.4.2 Flips in the chamber fan	248
	5.5	Configurations with fixed corank	257
		5.5.1 Configurations with $d+3$ points	257
		5.5.2 Configurations with $d+4$ points	261
		5.5.3 Lawrence polytopes and the complexity of secondary polytopes	264
		Exercises	270
6	Som	e Interesting Configurations	275
U	6.1	Cyclic polytopes	-
	0.1	6.1.1 Warm-up example: two dimensions	
		6.1.2 Combinatorial properties of cyclic polytopes	
		6.1.4 Higher Stasheff-Tamari posets	
		6.1.5 The structure theorem for the first Stasheff-Tamari poset	
	()	6.1.6 Cyclic polytopes have many triangulations	
	6.2	Products of two simplices	
		6.2.1 The prism over a simplex	
		6.2.2 The product of simplices	
		6.2.3 Staircase triangulations	
		6.2.4 Non-regular triangulations of products of simplices	
	6.3	Cubes and their subpolytopes	
		6.3.1 Small 0/1 non-regular triangulations	
		6.3.2 Two simple ways to triangulate any cube	
		6.3.3 Triangulating high-dimensional cubes. State of the art	
		6.3.4 Cubes of three dimensions	
		6.3.5 Cubes of four dimensions	
		6.3.6 Slices of cubes: triangulations of hypersimplices	
		6.3.7 Birkhoff's polytope	
		Exercises	. 334
7	Som	e Interesting Triangulations	337
	7.1	The mother of all examples, and some relatives	
		7.1.1 A theme with many variations	
		7.1.2 Twelve proofs of non-regularity	
	7.2	Highly flip-deficient triangulations	
		7.2.1 Dimension 3: A zig-zag grid	
		7.2.2 Locally acyclic orientations and triangulations of products	
		7.2.3 Locally acyclic orientations without reversible edges	
		7.2.4 Dimension 4: Layers of prisms	
	7.3	Dimension 5: A disconnected graph of triangulations with unimodular triangulations	
	1.3	<u> </u>	
		7.3.1 Locally acyclic orientations of boundary subcomplexes	
		7.5.2 Unimodinar manginations in different components of the graph of friangilations	1011

		7.3.3	Exponential number of components in the graph of flips	361		
	7.4	Dimer	nsion 6: A disconnected graph of triangulations in general position	362		
		7.4.1	The building block: Gale octagons	363		
		7.4.2	Seventeen points in special position	365		
		7.4.3	A disconnected space of triangulations in general position			
		Exerci				
8	Algo	orithmi	c Issues	377		
	8.1	Tools	for computation	377		
		8.1.1	Chirotopes	377		
		8.1.2	Computing the chirotope	378		
		8.1.3	Computing circuit and cocircuit signatures from the chirotope			
	8.2	Verific	cation and realizability			
		8.2.1	Constructing regular triangulations in practice			
		8.2.2	Checking regularity of a triangulation			
	8.3		g and enumerating triangulations			
	0.0	8.3.1	Exploring a flip-graph component			
		8.3.2	Enumeration of all triangulations			
		8.3.3	Enumeration with symmetry			
		8.3.4	Implementation issues			
	8.4		ling the number of triangulations			
	8.5					
	8.3	-	ization			
		8.5.1	A linear optimization approach: the universal polytope			
		8.5.2	Relaxations of the universal polytope and its edges			
		8.5.3	Equidecomposable and weakly neighborly polytopes			
	8.6		utational complexity of triangulation problems			
		8.6.1	A very quick review of complexity classes			
		8.6.2	The hardness of the planar constrained triangulation problem			
		8.6.3	Hardness of minimum length triangulations in the plane			
		8.6.4	Hardness of minimal size triangulations of convex polytopes			
		Exerci	ses	429		
_	_			433		
9						
	9.1	•	polytopes			
		9.1.1	Monotone paths			
		9.1.2	Zonotopal tilings			
		9.1.3	Polyhedral subdivisions	438		
		9.1.4	Compatible subdivisions and the fiber polytope			
	9.2	Mixed	subdivisions and the Cayley trick	445		
		9.2.1	An example	445		
		9.2.2	Mixed subdivisions and the Minkowski projection	447		
		9.2.3	Subdivisions in the Cayley embedding and the Cayley projection	452		
		9.2.4	The Cayley trick	454		
		9.2.5	Product of a triangle and k-simplex	459		
	9.3		e polytopes and unimodular triangulations	463		
		9.3.1	Triangulations of lattice polygons	465		
		9.3.2	Existence of unimodular triangulations	469		
		9.3.3	Ehrhart polynomials and unimodular triangulations			
		1.0.0				

Contents	xiii

9.4	Triang	ulations and Gröbner bases	478
	9.4.1	Gröbner bases and toric ideals	479
	9.4.2	Sturmfels' correspondence	481
9.5	Polyto	pal complexes and regular triangulations	488
	9.5.1	Central and normal fans as regular triangulations	489
	9.5.2	Shellings, flips, and face vectors	493
	9.5.3	Polytopality via regular triangulations	502
	Exerci	ses	509
Bibliography			513
Index			531