
Chapter 2

Continuity

2.1 Compactness

An open interval is a set of reals of the form (a, b) = {x : a < x < b}. As in
§1.4, we are allowing a = −∞ or b = ∞ or both. A compact interval is a set
of reals of the form [a, b] = {x : a ≤ x ≤ b}, where a, b are real. The length
of [a, b] is b − a. Recall (§1.5) that a sequence subconverges to L if it has a
subsequence converging to L.

Recall a subset K ⊂ R is bounded if supK and infK are finite. We say
K is closed if (xn) ⊂ K and xn → c implies c ∈ K. For example, from the
comparison property of sequences, a compact interval is closed and bounded.

Theorem 2.1.1. Let K ⊂ R be closed and bounded and let (xn) be any
sequence in K. Then (xn) subconverges to some c in K.

To derive this result, since K is bounded, we may choose [a, b] with K ⊂
[a, b]. Divide the interval I = [a, b] into 10 subintervals (of the same length),
and order them from left to right (Figure 2.1), I0, I1, . . . , I9. Pick one of
them, say Id1 , containing infinitely many terms of (xn), i.e., {n : xn ∈ Id1} is
infinite, and select one of the terms of the sequence in Id1 and call it x′

1. Then
the length of J1 ≡ Id1 is (b− a)/10. Now divide J1 into 10 subintervals again
ordered left to right and called Id10, . . . , Id19. Select

1 one of them, say Id1d2 ,
containing infinitely many terms of the sequence, and pick one of the terms
(beyond x′

1) in the sequence in Id1d2 and call it x′
2. The length of J2 ≡ Id1d2

is (b − a)/100. Continuing by induction, this yields

I ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . .

1 The choice can be avoided by selecting the leftmost interval at each stage.
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50 2 Continuity

and a subsequence (x′
n), where the length of Jn is (b − a)10−n and x′

n ∈ Jn
for all n ≥ 1. But, by construction, the real

c = a+ (b − a) · .d1d2d3 . . .

lies in all the intervals Jn, n ≥ 1 (it may help to momentarily replace [a, b]
by [0, 1]). Hence,

|x′
n − c| ≤ (b − a)10−n → 0.

Thus (xn) subconverges to c. Since K is closed, c ∈ K. ��

Id1Id1d2

Fig. 2.1 The intervals Id1d2...dn

Thus this theorem is equivalent to, more or less, the existence of decimal
expansions.

If K is replaced by an open interval (a, b), the theorem is false as it
stands; hence, the theorem needs to be modified. A useful modification is
the following.

Theorem 2.1.2. If (xn) is a sequence of reals in (a, b), then (xn) subcon-
verges to some a < c < b or to a or to b.

To see this, since a = inf(a, b), there is (Theorem 1.5.4) a sequence (cn)
in (a, b) satisfying cn → a. Similarly, since b = sup(a, b), there is a sequence
(dn) in (a, b) satisfying dn → b. Now there is either an m ≥ 1 with (xn)
in [cm, dm] or not. If so, the result follows from Theorem 2.1.1. If not, for
every m ≥ 1, there is an xnm not in [cm, dm]. Let (ym) be the subsequence of
(xnm) obtained by restricting attention to terms satisfying xnm > dm, and
let (zm) be the subsequence of (xnm ) obtained by restricting attention to
terms satisfying xnm < cm. Then at least one of the sequences (ym) or (zm)
is infinite, so either ym → b or zm → a (or both) as m → ∞. Thus (xn)
subconverges to a or to b. ��

Note this result holds even when a = −∞ or b = ∞. The remainder of
this section is used only in §6.6 and may be skipped until then.

We say a set K ⊂ R is sequentially compact if every sequence (xn) ⊂ K
subconverges to some c ∈ K. Thus we conclude every closed and bounded set
is sequentially compact.

A set U ⊂ R is open in R if for every c ∈ U , there is an open interval I
containing c and contained in U . Clearly, an open interval is an open set.

A collection of open sets in R is a set U whose elements are open sets
in R. Then by Exercise 2.1.3,

⋃
U = {x : x ∈ U for some U ∈ U}

is open in R.
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Let X be a set. A sequence of sets in X is a function f : N → 2X . This is
written (An) = (A1, A2, . . . ), where f(n) = An, n ≥ 1. If (An) is a sequence
of sets, its union and intersection are denoted

∞⋃
n=1

An =
⋃

{An : n ≥ 1},
∞⋂
n=1

An =
⋂

{An : n ≥ 1}.

Given a sequence of sets (An), using Exercise 1.3.10, one can construct
by induction

A1 ∪ . . . ∪An =

n⋃
k=1

Ak, A1 ∩ . . . ∩ An =

n⋂
k=1

Ak

for n ≥ 1, by choosing g(n,A) = A ∪An+1 and g(n,A) = A ∩An+1.
Let K ⊂ R be any set. An open cover of K is a collection U of open sets

in R whose union contains K, K ⊂ ⋃U . If U and U ′ are open covers and
U ⊂ U ′, we say U ⊂ U ′ is a subcover. If U is countable, we say U is a countable
open cover . If U is finite, we say U is a finite open cover .

Theorem 2.1.3. If K ⊂ R is sequentially compact, then every countable
open cover has a finite subcover.

To see this, argue by contradiction. Suppose this was not so, and let

U = (U1, U2, . . . ).

Then for each n ≥ 1, U1∪ . . .∪Un does not contain K. Since K \U1∪ . . .∪Un

is closed and bounded (Exercise 2.1.3),

xn ≡ inf(K \ U1 ∪ . . . ∪ Un) ∈ K \ U1 ∪ . . . ∪ Un, n ≥ 1.

Then (xn) ⊂ K so (xn) subconverges to some c ∈ K. Now select UN with
c ∈ UN . Then xn ∈ UN for infinitely many n, contradicting the construction
of xn, n ≥ 1. ��

We say K is countably compact if every countable open cover has a finite
subcover. Thus we conclude every sequentially compact set is countably com-
pact.

Theorem 2.1.4. If K ⊂ R is countably compact, then every open cover has
a finite subcover.

To see this, let U be an open cover, and let I be the collection of open sets
I such that

• I is an open interval with rational endpoints, and
• I ⊂ U for some U ∈ U .
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Then I is countable and
⋃ I =

⋃U . Thus I is a countable open cover; hence,
there is a finite subcover {I1, . . . , IN} ⊂ I. For each k = 1, . . . , N , select2 an
open set U = Uk ∈ U containing Ik. Then {U1, . . . , UN} ⊂ U is a finite
subcover. ��

We say K ⊂ R is compact if every open cover has a finite subcover. Thus
we conclude every countably compact set is compact.

We summarize the results of this section.

Theorem 2.1.5. For K ⊂ R, the following are equivalent:

• K is closed and bounded,
• K is sequentially compact,
• K is countably compact,
• K is compact.

To complete the proof of this, it remains to show compactness implies
closed and bounded. So suppose K is compact. Then U = {(−n, n) : n ≥
1} is an open cover and hence has a finite subcover. Thus K is bounded.
If (xn) ⊂ R converges to c �∈ K, let Un = {x : |x− c| > 1/n}, n ≥ 1, and let
U = {U1, U2, . . . }. Then U is an open cover and hence has a finite subcover.
This implies (xn) is not wholly contained in K, which implies K is closed.
��

In particular, a compact interval [a, b] is a compact set. This is used in §6.6.

Exercises

2.1.1. Let (an, bn), n ≥ 1, be a sequence in R2. We say (an, bn), n ≥ 1,
subconverges to (a, b) ∈ R2 if there is a sequence of naturals (nk) such that
(ank

) converges to a and (bnk
) converges to b. Show that if (an) and (bn) are

bounded, then (an, bn) subconverges to some (a, b).

2.1.2. In the derivation of the first theorem, suppose that the intervals are
chosen, at each stage, to be the leftmost interval containing infinitely many
terms. In other words, suppose that Id1 is the leftmost of the intervals Ij
containing infinitely many terms, Id1d2 is the leftmost of the intervals Id1j

containing infinitely many terms, etc. In this case, show that the limiting
point obtained is x∗.

2.1.3. If U is a collection of open sets in R, then
⋃U is open in R. Also if

K is closed and U is open, then K \ U is closed.

2 This uses the axiom of finite choice (Exercise 1.3.24).
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2.2 Continuous Limits

Let (a, b) be an open interval, and let a < c < b. The interval (a, b), punctured
at c, is the set (a, b) \ {c} = {x : a < x < b, x �= c}.

Let f be a function defined on an interval (a, b) punctured at c, a < c < b.
We say L is the limit of f at c,, and we write

lim
x→c

f(x) = L

or f(x) → L as x → c, if, for every sequence (xn) ⊂ (a, b) satisfying xn �= c
for all n ≥ 1 and converging to c, f(xn) → L.

For example, let f(x) = x2, and let (a, b) = R. If xn → c, then (§1.5),
x2
n → c2. This holds true no matter what sequence (xn) is chosen, as long as

xn → c. Hence, in this case, limx→c f(x) = c2.
Going back to the general definition, suppose that f is also defined at c.

Then the value f(c) has no bearing on limx→c f(x) (Figure 2.2). For example,
if f(x) = 0 for x �= 0 and f(0) is defined arbitrarily, then limx→0 f(x) = 0.
For a more dramatic example of this phenomenon, see Exercise 2.2.1.

f(c)

Fig. 2.2 The value f(c) has no bearing on the limit at c

Of course, not every function has limits. For example, set f(x) = 1 if
x ∈ Q and f(x) = 0 if x ∈ R \Q. Choose any c in (a, b) = R. Since (§1.4)
there is a rational and an irrational between any two reals, for each n ≥ 1 we
can find rn ∈ Q and in ∈ R \Q with c < rn < c+1/n and c < in < c+1/n.
Thus rn → c and in → c, but f(rn) = 1 and f(in) = 0 for all n ≥ 1. Hence,
f has no limit anywhere on R.

Let f be a function defined on an interval (a, b) punctured at c, a < c < b.
Let (xn) ⊂ (a, b) be a sequence satisfying xn �= c for all n ≥ 1 and converging
to c. If xn → c, then (f(xn)) may have several limit points (Exercise 1.5.9).
We say L is a limit point of f at c if for some sequence xn → c, L is a limit
point of (f(xn)). Then the limit of f at c exists iff all limit points of f at c
are equal.

By analogy with sequences, the upper limit of f at c and lower limit of
f at c are3

L∗ = inf
δ>0

sup
0<|x−c|<δ

f(x), L∗ = sup
δ>0

inf
0<|x−c|<δ

f(x).

3 supA f and infA f are alternative notations for sup f(A) and inf f(A).



54 2 Continuity

Then (Exercise 2.2.8) L∗ and L∗ are the greatest and least limit points of f
at c.

Let (xn) be a sequence approaching b. If xn < b for all n ≥ 1, we write
xn → b−. Let f be defined on (a, b). We say L is the limit of f at b from the
left, and we write

lim
x→b−

f(x) = L,

if xn → b− implies f(xn) → L. In this case, we also write f(b−) = L. If
b = ∞, we write, instead, limx→∞ f(x) = L, f(∞) = L, i.e., we drop the
minus.

Let (xn) be a sequence approaching a. If xn > a for all n ≥ 1, we write
xn → a+. Let f be defined on (a, b). We say L is the limit of f at a from the
right, and we write

lim
x→a+

f(x) = L,

if xn → a+ implies f(xn) → L. In this case, we also write f(a+) = L.
If a = −∞, we write, instead, limx→−∞ f(x) = L, f(−∞) = L, i.e., we drop
the plus.

Suppose f(b−) = L and (xn) is a sequence approaching b such that xn < b
for all but finitely many n ≥ 1. Then we may modify finitely many terms in
(xn) so that xn < b for all n ≥ 1; since modifying a finite number of terms
does not affect convergence, we have f(xn) → L. Similarly, if f(b+) = L and
(xn) is a sequence approaching b such that xn > b for all but finitely many
n ≥ 1, we have f(xn) → L.

Of course, L above is either a real or ±∞.

Theorem 2.2.1. Let f be defined on an interval (a, b) punctured at c, a <
c < b. Then limx→c f(x) exists and equals L iff f(c+) and f(c−) both exist
and equal L.

If limx→c f(x) = L, then f(xn) → L for any sequence xn → c, whether the
sequence is to the right, the left, or neither. Hence, f(c−) = L and f(c+) = L.

Conversely, suppose that f(c−) = f(c+) = L, and let xn → c with xn �= c
for all n ≥ 1. We have to show that f(xn) → L.

Let (yn) denote the terms in (xn) that are greater than c, and let (zn)
denote the terms in (xn) that are less than c, arranged in their given order.
If (yn) is finite, then all but finitely many terms of (xn) are less than c;
thus, f(xn) → L. If (zn) is finite, then all but finitely many terms of (xn)
are greater than c; thus, f(xn) → L. Hence, we may assume both (yn) and
(zn) are infinite sequences with yn → c+ and zn → c−. Since f(c+) = L, it
follows that f(yn) → L; since f(c−) = L, it follows that f(zn) → L.

Let f∗ and f∗ denote the upper and lower limits of the sequence (f(xn)),
and set f∗

n = sup{f(xk) : k ≥ n}. Then f∗
n ↘ f∗. Hence, for any subsequence

(f∗
kn
), we have f∗

kn
↘ f∗. The goal is to show that f∗ = L = f∗.

Since f(yn) → L, its upper sequence converges to L, supi≥n f(yi) ↘ L;
since f(zn) → L, its upper sequence converges to L, supi≥n f(zi) ↘ L.
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For each m ≥ 1, let xkm denote the term in (xn) corresponding to ym, if
the term ym appears after the term zm in (xn). Otherwise, if zm appears after
ym, let xkm denote the term in (xn) corresponding to zm. In other words, if
yn = xin and zn = xjn , xkn = xmax(in,jn). Thus for each n ≥ 1, if k ≥ kn, we
must have xk equal to yi or zi with i ≥ n, so

{xk : k ≥ kn} ⊂ {yi : i ≥ n} ∪ {zi : i ≥ n}.

Hence,

f∗
kn

= sup
k≥kn

f(xk) ≤ max

[
sup
i≥n

f(yi), sup
i≥n

f(zi)

]
, n ≥ 1.

Now both sequences on the right are decreasing in n ≥ 1 to L, and the
sequence on the left decreases to f∗ as n ↗ ∞. Thus f∗ ≤ L. Now let g = −f .
Since g(c+) = g(c−) = −L, by what we have just learned, we conclude that
the upper limit of (g(xn)) is ≤ −L. But the upper limit of (g(xn)) equals
minus the lower limit f∗ of (f(xn)). Hence, f∗ ≥ L, so f∗ = f∗ = L. ��

A limit point of f at c is a left limit point of f at c if it is a limit point
of (f(xn)) for some sequence xn → c−. Similarly, if xn → c+, we have right
limit points. Every limit point at c is a left limit point at c or a right limit
point at c. Then f(c+) exists iff all right limit points of f at c are equal, and
f(c−) exists iff all left limit points of f at c are equal. From the above result,
the limit of f at c exists iff all left and right limit points of f at c are equal.

Define L∗
+ to be the greatest of the right limit points of f at c, L∗+ the

least of the right limit points of f at c, L∗
− the greatest of the left limit points

of f at c, and L∗− the least of the right limit points of f at c. These are the
upper and lower left and right limits of f at c. We conclude the limit of f at
c exists iff the four quantities L∗

+, L∗+, L∗
−, L∗− are equal.

Since continuous limits are defined in terms of limits of sequences, they
enjoy the same arithmetic and ordering properties. For example,

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x),

lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x).

These properties will be used without comment.
A function f is increasing (decreasing) if x ≤ x′ implies f(x) ≤ f(x′)

(f(x) ≥ f(x′), respectively), for all x, x′ in the domain of f . The function
f is strictly increasing (strictly decreasing) if x < x′ implies f(x) < f(x′)
(f(x) > f(x′), respectively), for all x, x′ in the domain of f . If f is increasing
or decreasing, we say f is monotone. If f is strictly increasing or strictly
decreasing, we say f is strictly monotone.
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Exercises

2.2.1. Define f : R → R by setting f(m/n) = 1/n, for m/n ∈ Q with
no common factor in m and n > 0, and f(x) = 0, x /∈ Q. Show that
limx→c f(x) = 0 for all c ∈ R.

2.2.2. Let f be increasing on (a, b). Then f(a+) (exists and) equals inf{f(x) :
a < x < b}, and f(b−) equals sup{f(x) : a < x < b}.
2.2.3. If f is monotone on (a, b), then f(c+) and f(c−) exist, and f(c) is bet-
ween f(c−) and f(c+), for all c ∈ (a, b). Show also that, for each δ > 0, there
are, at most, countably many points c ∈ (a, b) where |f(c+)− f(c−)| ≥ δ.
Conclude that there are, at most, countably many points c in (a, b) at which
f(c+) �= f(c−).

2.2.4. Let f be defined on [a, b], and let Ik = (ck, dk), 1 ≤ k ≤ N , be disjoint
open intervals in (a, b). The variation of f over these intervals is

N∑
k=1

|f(dk)− f(ck)| (2.2.1)

and the total variation vf (a, b) is the supremum of variations of f in (a, b)
over all such disjoint unions of open intervals in (a, b). We say that f is
bounded variation on [a, b] if vf (a, b) is finite. Show bounded variation on
[a, b] implies bounded on [a, b].

2.2.5. If f is increasing on an interval [a, b], then f is bounded variation on
[a, b] and vf (a, b) = f(b) − f(a). If f = g − h with g, h increasing on [a, b],
then f is bounded variation on [a, b].

2.2.6. Let f be bounded variation on [a, b], and, for a ≤ x ≤ b, let v(x) =
vf (a, x). Show

v(x) + |f(y)− f(x)| ≤ v(y), a ≤ x < y ≤ b,

hence, v and v − f are increasing on [a, b]. Conclude that f is of bounded
variation on [a, b] iff f is the difference of two increasing functions on [a, b].
If moreover f is continuous, so are v and v − f .

2.2.7. Show that the f in Exercise 2.2.1 is not bounded variation on [0, 2]
(remember that

∑
1/n = ∞).

2.2.8. Show that the upper limit and lower limit of f at c are the greatest
and least limit points of f at c, respectively.
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2.3 Continuous Functions

Let f be defined on (a, b), and choose a < c < b. We say that f is continuous
at c if

lim
x→c

f(x) = f(c).

If f is continuous at every real c in (a, b), then we say that f is continuous
on (a, b) or, if (a, b) is understood from the context, f is continuous.

Recalling the definition of limx→c, we see that f is continuous at c iff, for
all sequences (xn) satisfying xn → c and xn �= c, n ≥ 1, f(xn) → f(c). In
fact, f is continuous at c iff xn → c implies f(xn) → f(c), i.e., the condition
xn �= c, n ≥ 1, is superfluous. To see this, suppose that f is continuous
at c, and suppose that xn → c, but f(xn) �→ f(c). Since f(xn) �→ f(c),
by Exercise 1.5.8, there is an ε > 0 and a subsequence (x′

n), such that
|f(x′

n) − f(c)| ≥ ε and x′
n → c, for n ≥ 1. But, then f(x′

n) �= f(c) for all
n ≥ 1; hence, x′

n �= c for all n ≥ 1. Since x′
n → c, by the continuity at c, we

obtain f(x′
n) → f(c), contradicting |f(x′

n)− f(c)| ≥ ε. Thus f is continuous
at c iff xn → c implies f(xn) → f(c).

In the previous section, we saw that f(x) = x2 is continuous at c. Since
this works for any c, f is continuous. Repeating this argument, one can show
that f(x) = x4 is continuous, since x4 = x2x2. A simpler example is to choose
a real k and to set f(x) = k for all x. Here f(xn) = k, and f(c) = k for all
sequences (xn) and all c, so f is continuous. Another example is f : (0,∞) →
R given by f(x) = 1/x. By the division property of sequences, xn → c implies
1/xn → 1/c for c > 0, so f is continuous.

Functions can be continuous at various points and not continuous at other
points. For example, the function f in Exercise 2.2.1 is continuous at every
irrational c and not continuous at every rational c. On the other hand, the
function f : R → R, given by (§2.2)

f(x) =

{
1, x ∈ Q

0, x �∈ Q,

is continuous at no point.
Continuous functions have very simple arithmetic and ordering properties.

If f and g are defined on (a, b) and k is real, we have functions f + g, kf , fg,
max(f, g), min(f, g) defined on (a, b) by setting, for a < x < b,

(f + g)(x) = f(x) + g(x),

(kf)(x) = kf(x),

(fg)(x) = f(x)g(x),

max(f, g)(x) = max[f(x), g(x)],

min(f, g)(x) = min[f(x), g(x)].
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If g is nonzero on (a, b), i.e., g(x) �= 0 for all a < x < b, define f/g by setting

(f/g)(x) =
f(x)

g(x)
, a < x < b.

Theorem 2.3.1. If f and g are continuous, then so are f + g, kf , fg,
max(f, g), and min(f, g). Moreover, if g is nonzero, then f/g is continuous.

This is an immediate consequence of the arithmetic and ordering properties
of sequences: If a < c < b and xn → c, then f(xn) → f(c) and g(xn) → g(c).
Hence, f(xn) + g(xn) → f(c) + g(c), kf(xn) → kf(c), f(xn)g(xn) →
f(c)g(c), max[f(xn), g(xn)] → max[f(c), g(c)], and min[f(xn), g(xn)] →
min[f(c), g(c)]. If g(c) �= 0, then f(xn)/g(xn) → f(c)/g(c). ��

For example, we see immediately that f(x) = |x| is continuous on R since
|x| = max(x,−x).

Let us prove, by induction, that, for all k ≥ 1, the monomials fk(x) = xk

are continuous (on R). For k = 1, this is so since xn → c implies f1(xn) =
xn → c = f1(c). Assuming that this is true for k, fk+1 = fkf1 since xk+1 =
xkx. Hence, the result follows from the arithmetic properties of continuous
functions.

A polynomial f : R → R is a linear combination of monomials, i.e., a
polynomial has the form

f(x) = a0x
d + a1x

d−1 + a2x
d−2 + · · ·+ ad−1x+ ad.

If a0 �= 0, we call d the degree of f . The reals a0, a1, . . . , ad are the coefficients
of the polynomial.

Let f be a polynomial of degree d > 0, and let a ∈ R. Then there is a
polynomial g of degree d− 1 satisfying4

f(x) − f(a)

x− a
= g(x), x �= a. (2.3.1)

To see this, since every polynomial is a linear combination of monomials, it
is enough to check (2.3.1) on monomials. But, for f(x) = xn,

xn − an

x− a
= xn−1 + xn−2a+ · · ·+ xan−2 + an−1, x �= a, (2.3.2)

which can be checked5 by cross multiplying. This establishes (2.3.1).
Since a monomial is continuous and a polynomial is a linear combination

of monomials, by induction on the degree, we obtain the following.

Theorem 2.3.2. Every polynomial f is continuous on R. Moreover, if d is
its degree, there are, at most, d real numbers x satisfying f(x) = 0.

4 g also depends on a.
5 (2.3.2) with x = 1 was used to sum the geometric series in §1.6.
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A real x satisfying f(x) = 0 is called a zero or a root of f . Thus every
polynomial f has, at most, d roots. To see this, proceed by induction on the
degree of f . If d = 1, f(x) = a0x + a1, so f has one root x = −a1/a0. Now
suppose that every dth-degree polynomial has, at most, d roots, and let f
be a polynomial of degree d + 1. We have to show that the number of roots
of f is at most d + 1. If f has no roots, we are done. Otherwise, let a be a
root, f(a) = 0. Then by (2.3.1) there is a polynomial g of degree d such that
f(x) = (x− a)g(x). Thus any root b �= a of f must satisfy g(b) = 0. Since by
the inductive hypothesis g has, at most, d roots, we see that f has, at most,
d+ 1 roots. ��

A polynomial may have no roots, e.g., f(x) = x2 + 1. However, every
polynomial of odd degree has at least one root (Exercise 2.3.1).

A rational function is a quotient f = p/q of two polynomials. The natural
domain of f is R \Z(q), where Z(q) denotes the set of roots of q. Since Z(q)
is a finite set, the natural domain of f is a finite union of open intervals. We
conclude that every rational function is continuous where it is defined.

Let f : (a, b) → R. If f is not continuous at c ∈ (a, b), we say that f is
discontinuous at c. There are “mild” discontinuities, and there are “wild”
discontinuities. The mildest situation (Figure 2.3) is when the limits f(c+)
and f(c−) exist and are equal, but not equal to f(c). This can be easily
remedied by modifying the value of f(c) to equal f(c+) = f(c−). With this
modification, the resulting function then is continuous at c. Because of this,
such a point c is called a removable discontinuity . For example, the function
f in Exercise 2.2.1 has removable discontinuities at every rational.

The next level of complexity is when f(c+) and f(c−) exist but may
or may not be equal. In this case, we say that f has a jump discontinuity
(Figure 2.3) or a mild discontinuity at c. For example, every monotone func-
tion has (at worst) jump discontinuities. In fact, every function of bounded
variation has (at worst) jump discontinuities (Exercise 2.3.18). The (amount
of) jump at c, a real number, is f(c+)− f(c−). In particular, a jump discon-
tinuity of jump zero is nothing more than a removable discontinuity.

0 1

1

2 3 4

Fig. 2.3 A jump of 1 at each integer

Any discontinuity that is not a jump is called a wild discontinuity
(Figure 2.4). If f has a wild discontinuity at c, then from above f cannot
be of bounded variation on any open interval surrounding c. The converse of
this statement is false. It is possible for f to have mild discontinuities but
not be of bounded variation (Exercise 2.2.7).
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Fig. 2.4 A wild discontinuity

An alternate and useful description of continuity is in terms of a modulus
of continuity. Let f : (a, b) → R, and fix a < c < b. For δ > 0, let

μc(δ) = sup{|f(x)− f(c)| : |x− c| < δ, a < x < b}.

Since the sup, here, is possibly that of an unbounded set, we may have
μc(δ) = ∞. The function μc : (0,∞) → [0,∞) ∪ {∞} is the modulus of con-
tinuity of f at c (Figure 2.5).

For example, let f : (1, 10) → R be given by f(x) = x2 and pick c = 9.
Since x2 is monotone over any interval not containing zero, the maximum
value of |x2−81| over any interval not containing zero is obtained by plugging
in the endpoints. Hence, μ9(δ) is obtained by plugging in x = 9 ± δ, leading
to μ9(δ) = δ(δ+18). In fact, this is correct only if 0 < δ ≤ 1. If 1 ≤ δ ≤ 8, the
interval under consideration is (9−δ, 9+δ)∩(1, 10) = (9−δ, 10). Here plugging
in the endpoints leads to μ9(δ) = max(19, 18δ−δ2). If δ ≥ 8, then (9−δ, 9+δ)
contains (1, 10), and hence, μ9(δ) = 80. Summarizing, for f(x) = x2, c = 9,
and (a, b) = (1, 10),

μc(δ) =

⎧⎪⎨
⎪⎩
δ(δ + 18), 0 < δ ≤ 1,

max(19, 18δ− δ2), 1 ≤ δ ≤ 8,

80, δ ≥ 8.

Going back to the general definition, note that μc(δ) is an increasing func-
tion of δ, and hence, μc(0+) exists (Exercise 2.2.2).

Theorem 2.3.3. Let f be defined on (a, b), and choose c ∈ (a, b). The
following are equivalent.

A. f is continuous at c.
B. μc(0+) = 0.
C. For all ε > 0, there exists δ > 0, such that

|x− c| < δ implies |f(x)− f(c)| < ε.
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1 1099− δ 9 + δ

Fig. 2.5 Computing the modulus of continuity

That A implies B is left as Exercise 2.3.2. Now assume B, and suppose
that ε > 0 is given. Since μc(0+) = 0, there exists a δ > 0 with μc(δ) < ε.
Then by definition of μc, |x− c| < δ implies |f(x)− f(c)| ≤ μc(δ) < ε, which
establishes C. Now assume the ε-δ criterion C, and let xn → c. Then for
all but a finite number of terms, |xn − c| < δ. Hence, for all but a finite
number of terms, f(c) − ε < f(xn) < f(c) + ε. Let yn = f(xn), n ≥ 1. By
the ordering properties of sup and inf, f(c)− ε ≤ yn∗ ≤ y∗n ≤ f(c)+ ε. By the
ordering properties of sequences, f(c) − ε ≤ y∗ ≤ y∗ ≤ f(c) + ε. Since ε > 0
is arbitrary, y∗ = y∗ = f(c). Thus yn = f(xn) → f(c). Since (xn) was any
sequence converging to c, limx→c f(x) = f(c), i.e., A. ��

Thus in practice, one needs to compute μc(δ) only for δ small enough,
since it is the behavior of μc near zero that counts. For example, to check
continuity of f(x) = x2 at c = 9, it is enough to note that μ9(δ) = δ(δ + 18)
for small enough δ, which clearly approaches zero as δ → 0+.

To check the continuity of f(x) = x2 at c = 9 using the ε-δ criterion C,
given ε > 0, it is enough to exhibit a δ > 0 with μ9(δ) < ε. Such a δ is the lesser
of ε/20 and 1, δ = min(ε/20, 1). To see this, first, note that δ(δ+18) ≤ 19 for
this δ. Then ε ≤ 19 implies δ(δ+18) ≤ (ε/20)(1+18) = (19/20)ε < ε, whereas
ε > 19 implies δ(δ+18) < ε. Hence, in either case, μ9(δ) < ε, establishing C.

Now we turn to the mapping properties of a continuous function. First,
we define one-sided continuity. Let f be defined on (a, b]. We say that f is
continuous at b from the left if f(b−) = f(b). In addition, if f is continuous
on (a, b), we say that f is continuous on (a, b]. Let f be defined on [a, b). We
say that f is continuous at a from the right if f(a+) = f(a). In addition, if
f is continuous on (a, b), we say that f is continuous on [a, b).

Note by Theorem 2.2.1 that a function f is continuous at a particular
point c iff f is continuous at c from the right and continuous at c from the
left.

Let f be defined on [a, b]. We say that f is continuous on [a, b] if f is
continuous on [a, b) and (a, b]. Checking the definitions, we see f is continuous
on A if, for every c ∈ A and every sequence (xn) ⊂ A converging to c,
f(xn) → f(c), whether A is (a, b), (a, b], [a, b), or [a, b].

Theorem 2.3.4. Let f be continuous on a compact interval [a, b]. Then
f([a, b]) is a compact interval [m,M ].
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Thus a continuous function maps compact intervals to compact intervals.
Of course, it may not be the case that f([a, b]) equals [f(a), f(b)]. For exam-
ple, if f(x) = x2, f([−2, 2]) = [0, 4] and [f(−2), f(2)] = {4}. We derive two
consequences of this theorem.

Let f([a, b]) = [m,M ]. Then we have two reals c and d in [a, b], such that
f(c) = m and f(d) = M . In other words, the sup is attained in

M = sup{f(x) : a ≤ x ≤ b} = max{f(x) : a ≤ x ≤ b}

and the inf is attained in

m = inf{f(x) : a ≤ x ≤ b} = min{f(x) : a ≤ x ≤ b}.

More succinctly, M is a max and m is a min for the set f([a, b]).

Theorem 2.3.5. Let f be continuous on [a, b]. Then f achieves its max and
its min over [a, b].

Of course, this is not generally true on noncompact intervals since f(x) =
1/x has no max on (0, 1].

A second consequence is: Suppose that L is an intermediate value between
f(a) and f(b). Then there must be a c, a < c < b, satisfying f(c) = L. This
follows since f(a) and f(b) are two reals in f([a, b]) and f([a, b]) is an interval.
This is the intermediate value property.

Theorem 2.3.6 (Intermediate Value Property). Let f be continuous
on [a, b] and suppose f(a) < L < f(b). Then there is c ∈ (a, b) with f(c) = L.

On the other hand, the two consequences, the existence of the max and the
min and the intermediate value property, combine to yield Theorem 2.3.4.
To see this, let m = f(c) and M = f(d) denote the max and the min, with
c, d ∈ [a, b]. If m = M , f is constant; hence, f([a, b]) = [m,M ]. If m < M and
m < L < M , apply the intermediate value property to conclude that there
is an x between c and d with f(x) = L. Hence, f([a, b]) = [m,M ]. Thus to
derive the theorem, it is enough to derive the two consequences.

For the first, let M = sup f([a, b]). By Theorem 1.5.4, there is a sequence
(xn) in [a, b] such that f(xn) → M . But Theorem 2.1.1, (xn) subconverges
to some c ∈ [a, b]. By continuity, (f(xn)) subconverges to f(c). Since (f(xn))
also converges to M , M = f(c), so f has a max. Proceed similarly for the
min. This establishes Theorem 2.3.5.

For the second, suppose that f(a) < f(b), and let L be an intermediate
value, f(a) < L < f(b). We proceed as in the construction of

√
2 in §1.4.

Let S = {x ∈ [a, b] : f(x) < L}, and let c = supS. S is nonempty since
a ∈ S, and S is clearly bounded. By Theorem 1.5.4, select a sequence (xn) in
S converging to c, xn → c. By continuity, it follows that f(xn) → f(c). Since
f(xn) < L for all n ≥ 1, we obtain f(c) ≤ L. On the other hand, c + 1/n is
not in S; hence, f(c+1/n) ≥ L. Since c+1/n → c, we obtain f(c) ≥ L. Thus
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f(c) = L. The case f(a) > f(b) is similar or is established by applying the
previous to −f . This establishes Theorem 2.3.6 and hence Theorem 2.3.4.
��

From this theorem, it follows that a continuous function maps open in-
tervals to intervals. However, they need not be open. For example, with
f(x) = x2, f((−2, 2)) = [0, 4). However, a function that is continuous and
strictly monotone maps open intervals to open intervals (Exercise 2.3.3).

The above theorem is the result of compactness mixed with continuity.
This mixture yields other dividends. Let f : (a, b) → R be given, and fix a
subset A ⊂ (a, b). For δ > 0, set

μA(δ) = sup{μc(δ) : c ∈ A}.

This is the uniform modulus of continuity of f on A. Since μc(δ) is an in-
creasing function of δ for each c ∈ A, it follows that μA(δ) is an increasing
function of δ, and hence μA(0+) exists. We say f is uniformly continuous
on A if μA(0+) = 0. When A = (a, b) equals the whole domain of the func-
tion, we delete the subscript A and write μ(δ) for the uniform modulus of
continuity of f on its domain.

Whereas continuity is a property pertaining to the behavior of a function
at (or near) a given point c, uniform continuity is a property pertaining to
the behavior of f near a given set A. Moreover, since μc(δ) ≤ μA(δ), uniform
continuity on A implies continuity at every point c ∈ A.

Inserting the definition of μc(δ) in μA(δ) yields

μA(δ) = sup{|f(x)− f(c)| : |x− c| < δ, a < x < b, c ∈ A},

where, now, the sup is over both x and c.
For example, for f(x) = x2, the uniform modulus μA(δ) over A = (1, 10)

equals the sup of |x2 − y2| over all 1 < x < y < 10 with y−x < δ. But this is
largest when y = x+δ; hence, μA(δ) is the sup of δ2+2xδ over 1 < x < 10−δ
which yields μA(δ) = 20δ − δ2. In fact, this is correct only if 0 < δ ≤ 9. For
δ = 9, the sup is already over all of (1, 10) and hence cannot get any bigger.
Hence, μA(δ) = 99 for δ ≥ 9. Summarizing, for f(x) = x2 and A = (1, 10),

μA(δ) =

{
20δ − δ2, 0 < δ ≤ 9,

99, δ ≥ 9.

Since f is uniformly continuous on A if μA(0+) = 0, in practice one
needs to compute μA(δ) only for δ small enough. For example, to check
uniform continuity of f(x) = x2 over A = (1, 10), it is enough to note that
μA(δ) = 20δ−δ2 for small enough δ, which clearly approaches zero as δ → 0+.

Now let f : (a, b) → R be continuous, and fix A ⊂ (a, b). What additional
conditions on f are needed to guarantee uniform continuity on A? When A
is a finite set {c1, . . . , cN},



64 2 Continuity

μA(δ) = max [μc1(δ), . . . , μcN (δ)] ,

and hence f is necessarily uniformly continuous on A.
When A is an infinite set, this need not be so. For example, with f(x) = x2

and B = (0,∞), μB(δ) equals the sup of μc(δ) = 2cδ + δ2 over 0 < c < ∞,
or μB(δ) = ∞, for each δ > 0. Hence, f is not uniformly continuous on B.

It turns out that continuity on a compact interval is sufficient for uniform
continuity.

Theorem 2.3.7. If f is continuous on [a, b], then f is uniformly continuous
on (a, b). Conversely, if f is uniformly continuous on (a, b), then f extends
to a continuous function on [a, b].

To see this, suppose that μ(0+) = μ(a,b)(0+) > 0, and set ε = μ(0+)/2.
Since μ is increasing, μ(1/n) ≥ 2ε, n ≥ 1. Hence, for each n ≥ 1, by the
definition of the sup in the definition of μ(1/n), there is a cn ∈ (a, b) with
μcn(1/n) > ε. Now by the definition of the sup in μcn(1/n), for each n ≥ 1,
there is an xn ∈ (a, b) with |xn − cn| < 1/n and |f(xn) − f(cn)| > ε. By
compactness, (xn) subconverges to some x ∈ [a, b]. Since |xn−cn| < 1/n for all
n ≥ 1, (cn) subconverges to the same x. Hence, by continuity, (|f(xn)−f(cn)|)
subconverges to |f(x) − f(x)| = 0, which contradicts the fact that this last
sequence is bounded below by ε > 0.

Conversely, let f : (a, b) → R be uniformly continuous with modulus of
continuity μ, and suppose xn → a+. Then (xn) is Cauchy, so let (en) be an
error sequence for (xn). Since

sup
m,k≥n

|f(xk)− f(xm)| ≤ μ(|xk − xm|) ≤ μ(en) → 0, n → ∞,

it follows (f(xn)) is Cauchy and hence converges. If x′
n → a+,

|f(xn)− f(x′
n)| ≤ μ(|xn − x′

n|) → 0, n → ∞,

hence, f(a+) exists. Similarly, f(b−) exists. ��
The conclusion may be false if f is continuous on (a, b) but not on [a, b] (see

Exercise 2.3.23). One way to understand the difference between continuity
and uniform continuity is as follows.

Let f be a continuous function defined on an interval (a, b), and pick
c ∈ (a, b). Then by definition of μc, |f(x) − f(c)| ≤ μc(δ) whenever x lies in
the interval (c − δ, c + δ). Setting g(x) = f(c) for x ∈ (c − δ, c + δ), we see
that, for any error tolerance ε, by choosing δ satisfying μc(δ) < ε, we obtain
a constant function g approximating f to within ε, at least in the interval
(c−δ, c+δ). Of course, in general, we do not expect to approximate f closely
by one and the same constant function over the whole interval (a, b). Instead,
we use piecewise constant functions.

If (a, b) is an open interval, a partition of (a, b) is a choice of points a =
x0 < x1 < · · · < xn−1 < xn = b in (a, b), where we denote the endpoints a
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and b by x0 and xn, respectively (even when they are infinite). We use the
same notation for compact intervals, i.e., a partition of [a, b] is a partition of
(a, b) (Figure 2.6).

a = x0 x1 x2 x3 x4 x5 = b

Fig. 2.6 A partition of (a, b)

We say g : (a, b) → R is piecewise constant if there is a partition a = x0 <
x1 < · · · < xn = b, such that g restricted to (xi−1, xi) is constant for i =
1, . . . , n (in this definition, the values of g at the points xi are not restricted
in any way). The mesh δ of the partition a = x0 < x1 < · · · < xn = b, by
definition, is the largest length of the subintervals, δ = max1≤i≤n |xi −xi−1|.
Note that an interval has partitions of arbitrarily small mesh iff the interval
is bounded.

Let f : [a, b] → R be continuous. Then from above, f is uniformly con-
tinuous on (a, b). Given a partition a = x0 < x1 < · · · < xn = b with

mesh δ, choose x#
i in (xi−1, xi) arbitrarily, i = 1, . . . , n. Then by definition

of μ, |f(x) − f(x#
i )| ≤ μ(δ) for x ∈ (xi−1, xi). If we set g(x) = f(x#

i ) for
x ∈ (xi−1, xi), i = 1, . . . , n, and g(xi) = f(xi), i = 0, 1, . . . , n, we obtain a
piecewise constant function g : [a, b] → R satisfying |f(x)− g(x)| ≤ μ(δ) for
every x ∈ [a, b]. Since f is uniformly continuous, μ(0+) = 0. Hence, for any
error tolerance ε > 0, we can find a mesh δ, such that μ(δ) < ε. We have
derived the following (Figure 2.7).

Theorem 2.3.8. If f is continuous on [a, b], then for each ε > 0, there is a
piecewise constant function fε on [a, b] such that

|f(x)− fε(x)| ≤ ε, a ≤ x ≤ b.��

a = x0

x#
1

x1

x#
2

x2

x#
3

x3

x#
4

x4 = b

Fig. 2.7 Piecewise constant approximation
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If f is continuous on an open interval, this result may be false. For example,
f(x) = 1/x, 0 < x < 1, cannot be approximated as above by a piecewise
constant function (unless infinitely many subintervals are used), precisely
because f “shoots up to ∞” near 0.

Let us turn to the continuity of compositions (§1.1). Suppose that f :
(a, b) → R and g : (c, d) → R are given with the range of f lying in the
domain of g, f [(a, b)] ⊂ (c, d). Then the composition g ◦ f : (a, b) → R is
given by (g ◦ f)(x) = g[f(x)], a < x < b.

Theorem 2.3.9. If f and g are continuous, so is g ◦ f .
Since f is continuous, xn → c implies f(xn) → f(c). Since g is continuous,

(g ◦ f)(xn) = g[f(xn)] → g[f(c)] = (g ◦ f)(c). ��
This result can be written as

lim
x→c

g[f(x)] = g
[
lim
x→c

f(x)
]
.

Since g(x) = |x| is continuous, this implies

lim
x→c

|f(x)| =
∣∣∣ lim
x→c

f(x)
∣∣∣ .

The final issue is the invertibility of continuous functions. Let f : [a, b] →
[m,M ] be a continuous function. When is there an inverse (§1.1) g : [m,M ] →
[a, b]? If it exists, is the inverse g necessarily continuous? It turns out that the
answers to these questions are related to the monotonicity properties (§2.2)
of the continuous function. For example, if f is continuous and increasing on
[a, b] and A ⊂ [a, b], sup f(A) = f(supA), and inf f(A) = f(inf A) (Exer-
cise 2.3.4). It follows that the upper and lower limits of (f(xn)) are f(x∗)
and f(x∗), respectively, where x∗, x∗ are the upper and lower limits of (xn)
(Exercise 2.3.5).

Theorem 2.3.10 (Inverse Function Theorem). Let f be continuous
on [a, b]. Then f is injective iff f is strictly monotone. In this case, let
[m,M ] = f([a, b]). Then the inverse g : [m,M ] → [a, b] is continuous and
strictly monotone.

If f is strictly monotone and x �= x′, then x < x′ or x > x′ which implies
f(x) < f(x′) or f(x) > f(x′); hence, f is injective.

Conversely, suppose that f is injective and f(a) < f(b). We claim that
f is strictly increasing (Figure 2.8). To see this, suppose not and choose
a ≤ x < x′ ≤ b with f(x) > f(x′). There are two possibilities: Either
f(a) < f(x) or f(a) ≥ f(x). In the first case, we can choose L in

(f(a), f(x)) ∩ (f(x′), f(x)).
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By the intermediate value property, there are c, d with a < c < x < d < x′

with f(c) = L = f(d). Since f is injective, this cannot happen, ruling out
the first case. In the second case, we must have f(x′) < f(b); hence, x′ < b,
so we choose L in

(f(x′), f(x)) ∩ (f(x′), f(b)).

By the intermediate value property, there are c, d with x < c < x′ < d < b
with f(c) = L = f(d). Since f is injective, this cannot happen, ruling out
the second case. Thus f is strictly increasing. If f(a) > f(b), applying what
we just learned to −f yields −f strictly increasing or f strictly decreasing.
Thus in either case, f is strictly monotone.

bxa x

L

dc

Fig. 2.8 Derivation of the IFT when f(a) < f(b)

Clearly strict monotonicity of f implies that of g. Now assume that f is
strictly increasing, the case with f strictly decreasing being entirely similar.
We have to show that g is continuous. Suppose that (yn) ⊂ [m,M ] with
yn → y. Let x = g(y), let xn = g(yn), n ≥ 1, and let x∗ and x∗ denote the
upper and lower limits of (xn). We have to show g(yn) = xn → x = g(y).
Since f is continuous and increasing, f(x∗) and f(x∗) are the upper and lower
limits of yn = f(xn) (Exercise 2.3.5). Hence, f(x∗) = y = f(x∗). Hence, by
injectivity, x∗ = x = x∗. ��

As an application, note that f(x) = x2 is strictly increasing on [0, n] and
hence has an inverse gn(x) =

√
x on [0, n2], for each n ≥ 1. By uniqueness

of inverses (Exercise 1.1.4), the functions gn, n ≥ 1, agree wherever their
domains overlap, hence yielding a single, continuous, strictly monotone g :
[0,∞) → [0,∞) satisfying g(x) =

√
x, x ≥ 0. Similarly, for each n ≥ 1,

f(x) = xn is strictly increasing on [0,∞). Thus every positive real x has
a unique positive nth root x1/n, and, moreover, the function g(x) = x1/n is
continuous on [0,∞). By composition, it follows that f(x) = xm/n = (xm)1/n

is continuous and strictly monotone on [0,∞) for all naturals m,n. Since
x−a = 1/xa for a ∈ Q, we see that the power functions f(x) = xr are defined,
strictly increasing, and continuous on (0,∞) for all rationals r. Moreover,
xr+s = xrxs, (xr)s = xrs for r, s rational, and, for r > 0 rational, xr → 0 as
x → 0 and xr → ∞ as x → ∞. The following limit is important: For x > 0,

lim
n↗∞

x1/n = 1. (2.3.3)
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To derive this, assume x ≥ 1. Then x ≤ xx1/n = x(n+1)/n, so x1/(n+1) ≤ x1/n,
so the sequence (x1/n) is decreasing and bounded below by 1; hence, its limit
L ≥ 1 exists. Since L ≤ x1/2n, L2 ≤ x2/2n = x1/n; hence, L2 ≤ L or L ≤ 1.
We conclude that L = 1. If 0 < x < 1, then 1/x > 1, so x1/n = 1/(1/x)1/n →
1 as n ↗ ∞.

Any function that can be obtained from polynomials or rational functions
by arithmetic operations and/or the taking of roots is called a (constructible)
algebraic function. For example,

f(x) =
1√

x(1 − x)
, 0 < x < 1,

is an algebraic function.
We now know what ab means for any a > 0 and b ∈ Q. But what if b /∈ Q?

What does 2
√
2 mean? To answer this, fix a > 1 and b > 0, and let

c = sup{ar : 0 < r < b, r ∈ Q}.

Let us check that when b is rational, c = ab. Since r < s implies ar < as,
ar ≤ ab when r < b. Hence, c ≤ ab. Similarly, c ≥ ab−1/n = ab/a1/n for all
n ≥ 1. Let n ↗ ∞ and use (2.3.3) to get c ≥ ab. Hence, c = ab when b is
rational. Thus it is consistent to define, for any a > 1 and real b > 0,

ab = sup{ar : 0 < r < b, r ∈ Q},

a0 = 1, and a−b = 1/ab. For all b real, we define 1b = 1, whereas for 0 < a < 1,
we define ab = 1/(1/a)b. This defines ab > 0 for all positive real a and all
real b. Moreover (Exercise 2.3.7),

ab = inf{as : s > b, s ∈ Q}.

Theorem 2.3.11. ab satisfies the usual rules:

A. For a > 1 and 0 < b < c real, 1 < ab < ac.
B. For 0 < a < 1 and 0 < b < c real, ab > ac.
C. For 0 < a < b and c > 0 real, acbc = (ab)c, (b/a)c = bc/ac, and ac < bc.
D. For a > 0 and b, c real, ab+c = abac.
E. For a > 0, b, c real, abc =

(
ab
)c
.

Since A ⊂ B implies supA ≤ supB, ab ≤ ac when a > 1 and b < c. Since,
for any b < c, there is an r ∈ Q ∩ (b, c), ab < ac, thus the first assertion.
Since, for 0 < a < 1, ab = 1/(1/a)b, applying the first assertion to 1/a yields
(1/a)b < (1/a)c or ab > ac, yielding the second assertion. For the third,
assume a > 1. If 0 < r < c is in Q, then ar < ac and br < bc yields

(ab)r = arbr < acbc.
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Taking the sup over r < c yields (ab)c ≤ acbc. If r < c and s < c are positive
rationals, let t denote their max. Then

arbs ≤ atbt = (ab)t < (ab)c.

Taking the sup of this last inequality over all 0 < r < c, first, then over all
0 < s < c yields acbc ≤ (ab)c. Hence, (ab)c = acbc for b > a > 1. Using this,
we obtain (b/a)cac = bc or (b/a)c = bc/ac. Since b/a > 1 implies (b/a)c > 1,
we also obtain ac < bc. The cases a < b < 1 and a < 1 < b follow from the
case b > a > 1. This establishes the third. For the fourth, the case 0 < a < 1
follows from the case a > 1, so assume a > 1, b > 0, and c > 0. If r < b and
s < c are positive rationals, then

ab+c ≥ ar+s = aras.

Taking the sups over r and s yields ab+c ≥ abac. If r < b + c is rational, let
d = (b+ c− r)/3 > 0. Pick rationals t and s with b > t > b−d, c > s > c−d.
Then t+ s > b+ c− 2d > r, so

ar < at+s = atas ≤ abac.

Taking the sup over all such r, we obtain ab+c ≤ abac. This establishes the
fourth when b and c are positive. The cases b ≤ 0 or c ≤ 0 follow from
the positive case. The fifth involves approximating b and c by rationals, and
we leave it to the reader. ��

As an application, we define the power function with an irrational expo-
nent. This is a nonalgebraic or transcendental function. Some of the transcen-
dental functions in this book are the power function xa (when a is irrational),
the exponential function ax, the logarithm loga x, the trigonometric functions
and their inverses, and the gamma function. The trigonometric functions are
discussed in §3.5, the gamma function in §5.1, whereas the power, exponen-
tial, and logarithm functions are discussed below.

Theorem 2.3.12. Let a be real, and let f(x) = xa on (0,∞). For a > 0, f is
strictly increasing and continuous with f(0+) = 0 and f(∞) = ∞. For a < 0,
f is strictly decreasing and continuous with f(0+) = ∞ and f(∞) = 0.

Since x−a = 1/xa, the second part follows from the first, so assume a > 0.
Let r, s be positive rationals with r < a < s, and let xn → c. We have to show
that xa

n → ca. But the sequence (xa
n) lies between (xr

n) and (xs
n). Since we

already know that the rational power function is continuous, we conclude that
the upper and lower limits L∗, L∗ of (xa

n) satisfy cr ≤ L∗ ≤ L∗ ≤ cs. Taking
the sup over all r rational and the inf over all s rational, with r < a < s,
gives L∗ = L∗ = ca. Thus f is continuous. Also since xr → ∞ as x → ∞
and xr ≤ xa for r < a, f(∞) = ∞. Since xa ≤ xs for s > a and xs → 0 as
x → 0+, f(0+) = 0. ��

Now we vary b and fix a in ab.
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Theorem 2.3.13. Fix a > 1. Then the function f(x) = ax, x ∈ R is strictly
increasing and continuous. Moreover,

f(x+ x′) = f(x)f(x′), (2.3.4)

f(−∞) = 0, f(0) = 1, and f(∞) = ∞.

From Theorem 2.3.11, we know that f is strictly increasing. Since an ↗ ∞
as n ↗ ∞, f(∞) = ∞. Since f(−x) = 1/f(x), f(−∞) = 0. Continuity
remains to be shown. If xn ↘ c, then (axn) is decreasing and axn ≥ ac, so its
limit L is ≥ ac. On the other hand, for d > 0, the sequence is eventually below
ac+d = acad; hence, L ≤ acad. Choosing d = 1/n, we obtain ac ≤ L ≤ aca1/n.
Let n ↗ ∞ to get L = ac. Thus, axn ↘ ac. If xn → c+ is not necessarily
decreasing, then x∗

n ↘ c; hence, ax
∗
n → ac. But x∗

n ≥ xn for all n ≥ 1; hence,
ax

∗
n ≥ axn ≥ ac, so axn → ac. Proceed similarly from the left. ��
The function f(x) = ax is the exponential function with base a > 1. In

fact, the exponential is the unique continuous function f on R satisfying the
functional equation (2.3.4) and f(1) = a.

By the inverse function theorem, f has an inverse g on any compact interval
and hence on R. We call g the logarithm with base a > 1 and write g(x) =
loga x. By definition of inverse, aloga x = x, for x > 0, and loga(a

x) = x, for
x ∈ R. The following is an immediate consequence of the above.

Theorem 2.3.14. The inverse of the exponential f(x) = ax with base a > 1
is the logarithm with base a > 1, g(x) = loga x. The logarithm is continuous
and strictly increasing on (0,∞). The domain of loga is (0,∞), the range is
R, loga(0+) = −∞, loga 1 = 0, loga ∞ = ∞, and

loga(bc) = loga b+ loga c, loga(b
c) = c loga b,

for b > 0, c > 0. ��

Exercises

2.3.1. If f is a polynomial of odd degree, then f(±∞) = ±∞ or f(±∞) =
∓∞, and there is at least one real c with f(c) = 0.

2.3.2. If f is continuous at c, then6 μc(0+) = 0.

2.3.3. If f : (a, b) → R is continuous, then f((a, b)) is an interval. In addition,
if f is strictly monotone, f((a, b)) is an open interval.

6 This uses the axiom of countable choice.
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2.3.4. If f is continuous and increasing on [a, b] and A ⊂ [a, b], then
sup f(A) = f(supA) and inf f(A) = f(inf A).

2.3.5. With f as in Exercise 2.3.4, let x∗ and x∗ be the upper and lower
limits of a sequence (xn). Then f(x∗) and f(x∗) are the upper and lower
limits of (f(xn)).

2.3.6. With r, s ∈ Q and x > 0, show that (xr)s = xrs and xr+s = xrxs.

2.3.7. Show that ab = inf{as : s > b, s ∈ Q}.
2.3.8. With b and c real and a > 0, show that (ab)c = abc.

2.3.9. Fix a > 0. If f : R → R is continuous, f(1) = a, and f(x + x′) =
f(x)f(x′) for x, x′ ∈ R, then f(x) = ax.

2.3.10. Use the ε-δ criterion to show that f(x) = 1/x is continuous at x = 1.

2.3.11. A real x is algebraic if x is a root of a polynomial of degree d ≥ 1,

a0x
d + a1x

d−1 + · · ·+ ad−1x+ ad = 0,

with rational coefficients a0, a1, . . . , ad. A real is transcendental if it is not
algebraic. For example, every rational is algebraic. Show that the set of al-
gebraic numbers is countable (§1.7). Conclude that the set of transcendental
numbers is uncountable.

2.3.12. Let a be an algebraic number. If f(a) = 0 for some polynomial f
with rational coefficients, but g(a) �= 0 for any polynomial g with rational
coefficients of lesser degree, then f is a minimal polynomial for a, and the
degree of f is the algebraic order of a. Now suppose that a is algebraic of
order d ≥ 2. Show that all the roots of a minimal polynomial f are irrational.

2.3.13. Suppose that the algebraic order of a is d ≥ 2. Then there is a c > 0,
such that ∣∣∣a− m

n

∣∣∣ ≥ c

nd
, n,m ≥ 1.

(See Exercise 1.4.9. Here you will need the modulus of continuity μa at a of
g(x) = f(x)/(x− a), where f is a minimal polynomial of a.)

2.3.14. Use the previous exercise to show that

.1100010 . . .010 · · · = 1

10
+

1

102
+

1

106
+ · · · =

∞∑
n=1

1

10n!

is transcendental.

2.3.15. For s > 1 real,
∑∞

n=1 n
−s converges.
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2.3.16. If a > 1, b > 0, and c > 0, then bloga c = cloga b, and
∑∞

n=1 5
− log3 n

converges.

2.3.17. Give an example of an f : [0, 1] → [0, 1] that is invertible but not
monotone.

2.3.18. Let f be of bounded variation (Exercise 2.2.4) on (a, b). Then the
set of points at which f is not continuous is at most countable. Moreover,
every discontinuity, at worst, is a jump.

2.3.19. Let f : (a, b) → R be continuous and let M = sup{f(x) : a < x < b}.
Assume f(a+) exists with f(a+) < M and f(b−) exists with f(b−) < M .
Then sup{f(x) : a < x < b} is attained. Use Theorem 2.1.2.

2.3.20. If f : R → R satisfies

lim
x→±∞

f(x)

|x| = +∞,

we say that f is superlinear . If f is superlinear and continuous, then the sup
is attained in

g(y) = sup
−∞<x<∞

[xy − f(x)] = max−∞<x<∞[xy − f(x)],

and g is superlinear. Use Exercise 2.3.19.

2.3.21. If f : R → R is superlinear and continuous and g is as above, then
g is also continuous. (Modify the logic of the previous solution.)

2.3.22. Let f(x) = 1+�x�−x, x ∈ R, where �x� denotes the greatest integer
≤ x (Figure 2.3). Compute

lim
n↗∞

(
lim

m↗∞
[f(n!x)]m

)

for x ∈ Q and for x /∈ Q.

2.3.23. Let f(x) = 1/x, 0 < x < 1. Compute μc(δ) explicitly for 0 < c < 1
and δ > 0. With I = (0, 1), show that μI(δ) = ∞ for all δ > 0. Conclude
that f is not uniformly continuous on (0, 1). (There are two cases, c ≤ δ and
c > δ.)

2.3.24. Let f : R → R be continuous, and suppose that f(∞) and f(−∞)
exist and are finite. Show that f is uniformly continuous on R.

2.3.25. Use
√
2
√
2
to show that there are irrationals a, b, such that ab is

rational. (Consider the two cases
√
2
√
2 ∈ Q and

√
2
√
2 �∈ Q.)
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