Inhalt

Mate	rialien zu	m Buch	16
Vorw	ort zur zv	veiten Auflage	17
1	Einle	eitung	19
1.1	Woru	m es uns in diesem Buch geht	20
1.2	Für w	en wir dieses Buch geschrieben haben	2:
1.3	Aufba	u der einzelnen Kapitel	22
1.4	Ein W	ort an die Programmierunkundigen	22
1.5	Beispi	elprogramme und die Webseite zum Buch	2
1.6	Warui	m wir JavaScript und p5.js verwendet haben	25
1.7	Begrif	fliche Abgrenzung und Fachbegriffe	26
1.8	Inhalt	e, Themen, Kapitel	27
1.9	Dank		30
2	Text	te bauen mit Markow	31
2.1	Das Bo	eispielprogramm Nonsense-Texter	35
2.2	Der Co	ode des Nonsense-Texters unter der Lupe	37
	2.2.1	Die Komponenten des Markow-Objekts	38
	2.2.2	Übergänge lernen	38
	2.2.3	Nonsense-Texte produzieren	40
2.3	Das Bo	eispielprogramm Wörter vorschlagen	43
	2.3.1	Die Komponenten des Markow-Objekts	43
	2.3.2	Übergänge und Häufigkeiten lernen	44
2.4	Wörte	r vorschlagen	47
2.5	Gewio	hteter Zufall	48
2.6	Ideen	zum Weitermachen	50
2.7	Zusan	nmenfassung und Ausblick	51

3	Schr	eibfehler automatisch korrigieren	53
3.1	Das Be	eispielprogramm Wortvergleich	54
3.2	Die M	atrix befüllen	57
	3.2.1	Die Füllung der oberen Zeile und der linken Spalte	57
	3.2.2	Die Füllung der verbleibenden Zellen	58
	3.2.3	Die drei Schritte unter der Lupe	62
3.3	Die Ur	msetzung im Beispielprogramm	62
	3.3.1	Das Levenshtein-Objekt	62
	3.3.2	Die Funktion matrix()	63
3.4	Das B	eispielprogramm Korrekturvorschläge	65
3.5	Ideen	zum Weitermachen	67
3.6	Zusan	nmenfassung und Ausblick	68
4.1	Items	und Transaktionen	71
4.2		größen der Assoziationsanalyse	
7.2	4.2.1	Support	
	4.2.2	Confidence	
	4.2.3	Lift	
4.3	Ein Be	ispiel von Hand gerechnet	76
4.4	Das Be	eispielprogramm Begriffsnetz	79
	4.4.1	Die Datenquelle	
	4.4.2	Beschränkung der Anwendung auf Item-Paare	81
4.5	Eine T	our durch den Code	82
	4.5.1	Die Klasse Begriffsnetz	82
	4.5.2	Enkodierung der Transaktionen	83
	4.5.3	Befüllung der Arrays für Support	
	4.5.4	Befüllung der Arrays für Confidence und Lift	
	4.5.5	Die Funktion assoziationen()	87
4.6	Ideen	zum Weitermachen	88

4.7	Zusan	nmenfassung und Ausblick	90
	4.7.1	Der Apriori-Algorithmus	90
	4.7.2	Transaktionstabellen	90
	4.7.3	Eine Übersicht aller Fachbegriffe aus diesem Kapitel	91
5	Spie	le für eine Person lösen	93
5.1	Das Sp	oiel Fruchtkräsch	93
5.2	Wie fi	ndet die KI den besten Zug?	95
5.3	Eine v	ielseitig einsetzbare Spiel-KI	98
5.4	Die Kl	asse Spielzustand	99
	5.4.1	Züge liefern modifizierte Spielzustände	100
	5.4.2	Die möglichen Züge	100
	5.4.3	Die Bewertung eines Spielzustands	100
	5.4.4	Ein Gedächtnis für Züge	101
	5.4.5	Die Schnittstelle im Überblick	101
5.5	Die Kl	asse KI	102
	5.5.1	Alle Folgezustände eines Spielzustands berechnen	102
	5.5.2	Alle Spielverläufe per Warteschlangenverfahren berechnen	103
	5.5.3	Die Spielzustände nach Bewertung sortieren	106
	5.5.4	Die Funktion besterZug()	106
	5.5.5	Die Funktionen des KI-Objekts im Überblick	107
5.6	Ideen	zum Weitermachen	107
5.7	Zusam	menfassung und Ausblick	108
6	Snia	le für zwei Personen gewinnen	100
	JPIC	ie iai zwei i cisonen gewinnen	109
6.1	Das Sp	siel Reversi	110
6.2	Das Be	eispielprogramm Reversi KI	111
6.3	Der M	inimax-Algorithmus	112
	6.3.1	Anwendungsgebiete und Grenzen des Minimax-Algorithmus	114

6.4	Tiefen	suche und Rekursion	115
	6.4.1	Breitensuche und Tiefensuche	116
	6.4.2	Die Paradoxie der Rekursion	117
	6.4.3	Verzweigte Rekursion	121
6.5	Die Kla	asse Spielzustand	123
	6.5.1	Die Bewertungsfunktion	123
	6.5.2	Die Schnittstelle im Überblick	125
6.6	Die Kla	asse KI	126
6.7	Beschl	eunigung mit Alpha-Beta-Pruning	130
6.8	Ideen	zum Weitermachen	131
6.9	Zusam	menfassung und Ausblick	132
_			
<u>7</u>	Q-Le	arning	133
7.1	Das Ei	chhörnchen und das Nussversteck	134
7.2	Umwe	lt, Agent, Aktion und Belohnung	139
	7.2.1	Das Verhältnis von Agent und Umwelt	140
7.3	Die Q-	Tabelle	141
	7.3.1	Q steht für Qualität	142
7.4	Das Be	eispielprogramm Q-Lerner	142
7.5	Die Q-	Tabelle befüllen	147
	7.5.1	Warum funktioniert das?	149
7.6	Der Co	de unter der Lupe	150
	7.6.1	Die Umwelt	150
	7.6.2	Der Q-Lerner	151
7.7	Gamm	a bestimmt die Weitsicht	152
7.8	Epsilo	n: Erforschung oder Anwendung	154
7.9	Ein zw	eiter Blick auf den Code	156
7.10	Alpha		158
7.11	Was w	rir weggelassen haben	159
	7.11.1	Komplexere Umwelten	160
	7.11.2	Kosten für Aktionen	160

	7.11.3 Belohnungen mit Zu	stands-Aktions-Paaren verknüpfen	160
		szustände	160
7.12	ldeen zum Weitermachen		161
	7.12.1 OpenAl Gym		162
	7.12.2 Das Buch von Suttor	und Barto	163
7.13	Zusammenfassung und Aus	blick	163
	7.13.1 Menschliches Lerner	r vs. Q-Learning	163
	7.13.2 Die Grenzen des Ver	fahrens	164
8	K-nächste-Nachba	rn	167
8.1	Häschen, Igel, Vogelspinne	oder Hai?	168
8.2	Das Beispielprogramm Tiere	erkennen	169
	Entfernungen hestimmen m	nit Pythagoras	172
8.3			
			175
8.4	Der Code im Detail		175 178
8.3 8.4 8.5 8.6	Der Code im Detail Ideen zum Weitermachen		
8.4 8.5	Der Code im Detail Ideen zum Weitermachen	blick	178
8.4 8.5 8.6	Der Code im Detailldeen zum Weitermachen Zusammenfassung und Aus K-means-Clusterin	blick	178 179
8.4 8.5 8.6	Der Code im Detailldeen zum Weitermachen Zusammenfassung und Aus K-means-Clusterin Clusterbildung in Aktion	blick	178 179 181
8.4 8.5 8.6	Der Code im Detail Ideen zum Weitermachen Zusammenfassung und Aus K-means-Clusterin Clusterbildung in Aktion 9.1.1 Mittelwert, Zentrum	blick	178 179 181 183
8.4 8.5 8.6 9	Der Code im Detail Ideen zum Weitermachen Zusammenfassung und Aus K-means-Clustering Clusterbildung in Aktion 9.1.1 Mittelwert, Zentrum 9.1.2 Die Schrittfolge des R	blick	178 179 181 183 183
8.4 8.5 8.6 9 9.1	Der Code im Detail Ideen zum Weitermachen Zusammenfassung und Aus K-means-Clusterin Clusterbildung in Aktion 9.1.1 Mittelwert, Zentrum 9.1.2 Die Schrittfolge des B	blick	178 179 181 183 183 185 186
8.4 8.5 8.6 9 9.1	Der Code im Detail Ideen zum Weitermachen Zusammenfassung und Aus K-means-Clustering Clusterbildung in Aktion 9.1.1 Mittelwert, Zentrum 9.1.2 Die Schrittfolge des B Das Beispielprogramm Wett Der Code	blick	178 179 181 183 183 185
8.4 8.5 8.6 9 9.1	Der Code im Detail	blick	178 179 181 183 183 185 186 188
8.4 8.5 8.6 9 9.1	Ideen zum Weitermachen Zusammenfassung und Aus K-means-Clusterin Clusterbildung in Aktion 9.1.1 Mittelwert, Zentrum 9.1.2 Die Schrittfolge des & Das Beispielprogramm Wett Der Code	blick	178 179 181 183 183 185 186 188
8.4 8.5 8.6 9 9.1 9.2 9.3	Der Code im Detail	blick	178 179 181 183 183 185 186 188 189
8.4 8.5 8.6 9 9.1 9.2 9.3	Ideen zum Weitermachen Zusammenfassung und Aus K-means-Clusterin Clusterbildung in Aktion 9.1.1 Mittelwert, Zentrum 9.1.2 Die Schrittfolge des & Das Beispielprogramm Wett Der Code	blick	178 179 181 183 183 185 186 188 189 190
8.4 8.5 8.6	Ideen zum Weitermachen Zusammenfassung und Aus K-means-Clustering Clusterbildung in Aktion 9.1.1 Mittelwert, Zentrum 9.1.2 Die Schrittfolge des k Das Beispielprogramm Wett Der Code	blick	178 179 181 183 183 185 186 188 189 190 191

9.5 9.6	Ideen zum Weitermachen Zusammenfassung und Ausblick	195 195
10	Neuronale Netze I: Das Häschenproblem	197
10.1	Bilderkennung: ein klassisches Problem	198
10.2	Was ist ein Modell?	199
10.3	Der Aufbau eines neuronalen Netzes	201
10.4	Das Häschenneuron und seine Kollegen	204
	10.4.1 Die biologische Nervenzelle als Vorbild	205
	10.4.2 Das künstliche Neuron	207
	10.4.3 b steht für Bias	208
	10.4.4 Die Aktivierungsfunktion	208
10.5	Das Beispielprogramm Tiere erkennen II	209
10.6	Der Code	211
10.7	Ideen zum Weitermachen	211
10.8	Zusammenfassung und Ausblick	212
11	Neuronale Netze II: Auf dem Weg ins Tal	213
11.1	Das überwachte Lernen	214
11.2	Die schrittweise Justierung des Modells	216
	11.2.1 Die grundlegende Idee	217
	11.2.2 Steigung	218
	11.2.3 Tangente	219
	11.2.4 Ableitung	219
	11.2.5 Der Gradientenabstieg	220
	11.2.6 Die Lernrate	222
11.3	Das Beispielprogramm Gradientenabstieg	223
11.4	Der Code	225
11.5	Tipps zum Weitermachen	226
11.6	Zusammenfassung und Ausblick	226

12		ronale Netze III: Fehler zurückverfolgen dem Neuronentrainer	220
		aciii Nearonentianici	229
12.1	Was is	t Backpropagation?	. 230
12.2	Das Be	eispielprogramm Neuronentrainer	. 231
	12.2.1	Aufgaben und Netzarchitekturen	. 232
	12.2.2	Ein Wiedersehen mit dem Häschenproblem	
	12.2.3	Lineare Trennbarkeit	. 236
12.3	Validie	erungsdaten, Überanpassung, Generatoren	. 237
	12.3.1	Validierungsdaten und Überanpassung	. 238
	12.3.2	Generatoren	
12.4	Weite	re Beispielaufgaben	. 240
	12.4.1	Kreis und Hintergrund	
	12.4.2	Quadrat und Hintergrund	
	12.4.3	Farbtunnel sieben Farben	
12.5	Die An	zahlen der verdeckten Schichten und der Neuronen	244
	12.5.1	Viel hilft viel?	
12.6	Was w	ir weggelassen haben	
	12.6.1	Dynamisierung der Lernrate	
	12.6.2	Batch und Epoche	
	12.6.3	Verlustfunktionen und Softmax	
12.7	Ideen 2	zum Weitermachen	246
12.8	Zusam	menfassung und Ausblick	248
13		ronale Netze IV: Faltungsnetze, eencoder, GANs und DQL	249
13.1	Faltun	gsnetze	249
	13.1.1	Das Beispielprogramm Filterlabor I	250
	13.1.2	Der Filterkernel in Aktion	251
	13.1.3	Padding und Striding	
	13.1.4	Das Beispielprogramm Filterlabor II	
	13.1.5	Eine Filterkombination, die den Buchstaben K erkennt	
	13.1.6	Die Struktur eines Faltungsnetzes	
	13.1.7	Faltungsnetze trainieren	257

13.2	Model	le, die Bilder erzeugen	258
13.3	Autoer	ncoder	260
	13.3.1	Dimensionsreduktion	260
	13.3.2	Daten ausdenken	261
13.4	Genera	ative Adversarial Networks	261
13.5	Deep C	Q-Learning	264
	13.5.1	Wie kommt die Umwelt ins Modell?	265
13.6	Zusam	menfassung und Ausblick	265
14	Tran	sformer verstehen	267
14.1	Ein Spr	achmodell von außen betrachtet	267
	14.1.1	Unterschiede zum Markow-Prozess	268
14.2	Wörte	r in Zahlen codieren für Fortgeschrittene	269
14.3	Wortei	inbettungen	270
	14.3.1	Relationen übertragen	274
14.4	Das Be	ispielprogramm Wort-Navigator	276
	14.4.1	Textquelle I: Dünstende Köchinnen und frittierende Konditoren	276
	14.4.2	Die Bedienoberfläche	277
	14.4.3	Relationen übertragen im Wort-Navigator	279
14.5	Vom To	ext zur Worteinbettung	282
	14.5.1	One Hot Encoding	283
	14.5.2	Paare aus Ziel- und Kontextwörtern	284
	14.5.3	Das Training	286
	14.5.4	Vom Training zur Worteinbettung	287
	14.5.5	Warum funktioniert das?	288
	14.5.6	Kosinus-Ähnlichkeit	289
14.6	Vom W	Vort zum Satz zum Text: Sequenzeinbettungen	290
14.7	Das Be	ispielprogramm Sequenz-Navigator	292
	14.7.1	Textquelle II: Ein Tag im Leben von Kati Katzenstein	292
	14.7.2	Die Bedienoberfläche	294
	14.7.3	Relationen zwischen Sequenzen	296

14.8	Transf	ormer am Horizont	297
	14.8.1	Ein verbesserter Markow-Prozess	297
	14.8.2	Und täglich grüßt Frau Katzenstein	298
	14.8.3	Positional Encodings	299
	14.8.4	Gewichtungen	299
	14.8.5	Sprache ist Kontext	
	14.8.6	Aufmerksamkeit	300
14.9	Zusam	menfassung und Ausblick	301
	14.9.1	Was wir ausgelassen haben	301
	14.9.2	Unterschiede zu ausgewachsenen Transformern	302
	14.9.3	Das erstaunliche Abstraktionsvermögen von Transformern	303
14.10	ldeen z	um Weitermachen	304
Nach	wort	: Auf der Suche nach Trurls Elektrobarden	305
Nach	wort	: Auf der Suche nach Trurls Elektrobarden	305
Nach Anha		: Auf der Suche nach Trurls Elektrobarden	
	ang	: Auf der Suche nach Trurls Elektrobarden	313
Anha	ang Eine ku		313
<u>Anha</u>	ang Eine ku Glossa	ırze Einführung in JavaScript und p5.js	313 315 359
Anha A B	Eine ku Glossal Quelle	ırze Einführung in JavaScript und p5.jsr	313 315 359 369
Anha A B	Eine ku Glossal Quelle	rze Einführung in JavaScript und p5.jsr rn und weiterführende Literatur	359 369