Kapitelübersicht

1	Was ist organische Chemie?	1
2	Strukturen organischer Verbindungen	. 17
3	Aufklärung organischer Strukturen	
4	Struktur von Molekülen	
5	Organische Reaktionen	
5	Nucleophile Addition an die Carbonylgruppe	
7	Delokalisierung und Konjugation	
В	Acidität, Basizität und pK,-Wert	
9	Verwendung von metallorganischen Reagenzien zur Bildung von C–C-Bindungen	
	Nucleophile Substitution an der Carbonylgruppe	
	Nucleophile Substitution an C=O mit Verlust des Carbonyl-Sauerstoffatoms	
	Gleichgewichte, Geschwindigkeiten und Mechanismen	
	¹ H-NMR: Protonen-Kernmagnetresonanz	
	Stereochemie	
	Nucleophile Substitution am gesättigten Kohlenstoffatom	
16	Konformationsanalyse	399
17	Eliminierungsreaktionen	425
18	Spektroskopische Methoden – ein Überblick	451
19	Elektrophile Addition an Alkene	475
20	Herstellung und Reaktionen von Enolen und Enolaten	497
21	Elektrophile aromatische Substitution	521
22	Konjugierte Addition und nucleophile aromatische Substitution	551
23	Chemoselektivität und Schutzgruppen	583
24	Regioselektivität	619
25	Alkylierung von Enolaten	643
26	Reaktionen von Enolaten mit Carbonylverbindungen: Aldol- und Claisen-Reaktionen	. 677

27	Schwefel, Silicium und Phosphor in der organischen Chemie	721
28	Retrosynthetische Analyse	763
29	Aromatische Heterocyclen 1: Reaktionen	795
30	Aromatische Heterocyclen 2: Synthese	831
31	Gesättigte Heterocyclen und stereoelektronische Effekte	865
32	Stereoselektivität bei cyclischen Molekülen	905
33	Diastereoselektivität	935
34	Pericyclische Reaktionen 1: Cycloadditionen	961
35	Pericyclische Reaktionen 2: sigmatrope Umlagerungen und elektrocyclische Reaktionen	995
36	Nachbargruppenbeteiligung, Umlagerung und Fragmentierung	1021
37	Radikalreaktionen	1063
38	Synthese und Reaktionen von Carbenen	1099
39	Aufklärung von Reaktionsmechanismen	1127
40	Metallorganische Chemie	1173
41	Asymmetrische Synthese	1209
42	Organische Chemie des Lebens	1245
43	Organische Chemie heute	1281

Inhaltsverzeichnis

	تürzungen XVI wort zur zweiten englischen Auflage XIX		Massenspektren, NMR- und IR- Spektroskopie ermöglichen zusammen
Die organische Chemie und dieses Buch XXIII			eine schnelle Identifizierung
1	Was ist organische Chemie?	1	bei der Suche nach einer Struktur 83
	Die organische Chemie und Sie		Ausblick auf die Kapitel 13 und 18 87 Weiterführende Literatur 88
	Organische Verbindungen		weiterfuhrende Literatur 00
	Die organische Chemie und die Industrie :	Λ	Struktur von Molekülen 89
	Die organische Chemie und das		Einleitung 89
	Periodensystem 13	3	Elektronen besetzen Atomorbitale 93
	Die organische Chemie und dieses Buch 14	4	Molekülorbitale – zweiatomige Moleküle 98
	Weiterführende Literatur 1	5	Bindungen zwischen unterschiedlichen Atomen 106
2	Strukturen organischer Verbindungen 1	7	Hybridisierung von Atomorbitalen 110
	Kohlenwasserstoffgerüste und		Rotation und Rigidität 116
	funktionelle Gruppen 18		Zum Abschluss
	Zeichnen von Molekülen 2		Ausblick 117
	Kohlenwasserstoffgerüste 2		Weiterführende Literatur 118
	Funktionelle Gruppen 3	1	
	Kohlenstoffatome, die funktionelle Gruppen tragen, können nach der	5	Organische Reaktionen 119
	Oxidationsstufe klassifiziert werden 3	6	Chemische Reaktionen
	Benennung von Verbindungen	8	Nucleophile und Elektrophile 124
	Wie bezeichnen Chemiker die		Gebogene Pfeile stehen für
	Verbindungen tatsächlich? 4	1	Reaktionsmechanismen
	Wie sollten Sie Verbindungen benennen? 4	6	Reaktionsmechanismen mit gebogenen Pfeilen selbst zeichnen 133
	Weiterführende Literatur 4	7	Weiterführende Literatur
3	Aufklärung organischer Strukturen 4	9 6	Nucleophile Addition an die
	Einleitung 4	_	Carbonylgruppe
	Massenspektrometrie	i3	Molekülorbitale erklären die
	Massenspektrometrie weist Isotope nach 5	55	Reaktivität der Carbonylgruppe 139
	Die atomare Zusammensetzung lässt sich mithilfe von hochauflösender		Angriff des Cyanid-lons auf Aldehyde und Ketone 141
	Massenspektrometrie bestimmen 5	57	Der Winkel des nucleophilen Angriffs
	Kernmagnetresonanz-(NMR-) Spektroskopie5	59	auf Aldehyde und Ketone
	Bereiche des ¹³C-NMR-Spektrums 6	54	auf Aldehyde und Ketone
	Verschiedene Beschreibungen der chemischen Verschiebung	54	Addition metallorganischer Reagenzien an Aldehyde und Ketone 146
	Eine Führung durch die ¹³C-NMR- Spektren einiger einfacher Moleküle 6		Addition von Wasser an Aldehyde und Ketone 148
	Das ¹H-NMR-Spektrum		Halbacetale aus der Reaktion von
	Infrarotspektren 7		Alkoholen mit Aldehyden und Ketonen 150

	Auch Ketone bilden Halbacetale	151		Verwendung von metallorganischen
	Säure- und Basekatalyse der Halbacetal- und Hydratbildung	152		Verbindungen zur Herstellung von organischen Molekülen 212
	Bisulfit-Additionsverbindungen			Oxidation von Alkoholen 217
	Weiterführende Literatur			Ausblick
				Weiterführende Literatur 219
7	Delokalisierung und Konjugation			No. 1 - 121 C. Late et a
	Einführung	157	10	Nucleophile Substitution an der Carbonylgruppe
	Struktur von Ethen (Ethylen, CH ₂ =CH ₂)	158		Durch nucleophile Addition an eine
	Moleküle mit mehr als einer C=C-	-		Carbonylgruppe entsteht nicht immer
	Doppelbindung			eine stabile Verbindung 221
	Konjugation von zwei π -Bindungen	162		Carbonsäurederivate 222
	Spektren im UV- und sichtbaren Bereich .	165		Warum sind tetraedrische
	Das Allylsystem	167		Zwischenstufen instabil? 224
	Delokalisierung über drei Atome ist ein häufiges Strukturmerkmal	171		Nicht alle Carbonsäurederivate sind gleichermaßen reaktiv
	Aromatizität	174		Säurekatalysatoren erhöhen die
	Weiterführende Literatur	180		Reaktivität der Carbonylgruppe 232
				Säurechloride entstehen aus Carbonsäuren mit SOCI ₂ oder PCI ₅ 239
В	Acidität, Basizität und pK _a -Wert	181		Herstellung anderer Verbindungen
	Organische Verbindungen sind als Ionen besser in Wasser löslich	181		durch Substitutionsreaktionen von
	Geladene Verbindungen können durch			Säurederivaten 241
	Säure-Base-Extraktion abgetrennt werden	182		Herstellung von Ketonen aus Estern: das Problem
	Säuren, Basen und pKWert			Herstellung von Ketonen aus Estern:
	Acidität			die Lösung 243
	Die Definition des pK _a -Wertes			Zusammenfassung 246
	Entwickeln einer pKSkala			Zum Abschluss 246
	Stickstoffverbindungen als Säuren und	131		Weiterführende Literatur 246
	Basen	194	11	Nucleophile Substitution an C=O mit
	Substituenten beeinflussen den pK _a -			Verlust des Carbonyl-Sauerstoffatoms 247
	Wert	196		Einführung 247
	Carbonsäuren	197		Aldehyde können mit Alkoholen zu
	Die Anwendung des pK _a -Wertes – die			Halbacetalen reagieren 248
	Entwicklung des Arzneistoffes Cimetidin	199		Acetale entstehen aus Aldehyden oder
	Lewis-Säuren und Lewis-Basen			Ketonen und Alkoholen in Gegenwart von Säure 250
	Weiterführende Literatur	202		Amine reagieren mit
9	Verwendung von metallorganischen			Carbonylverbindungen 254
	Reagenzien zur Bildung von C–C-			Imine sind die Stickstoffanaloga
	Bindungen	203		von Carbonylverbindungen 256
	Einführung	203		Zusammenfassung 264
	Metallorganische Verbindungen enthalten eine Kohlenstoff-Metall-			Weiterführende Literatur 265
	Bindung	204		
	Die Herstellung von metallorganischen			
	Varhindungon	206		

12	und Mechanismen	267		Racematspaltung genannt	355
	Wie weit und wie schnell?	268		Weiterführende Literatur	361
	Wie das Gleichgewicht zugunsten des erwünschten Produkts verschoben wird .	272		Nucleophile Substitution am gesättigten Kohlenstoffatom	363
	Entropie ist für die Bestimmung von Gleichgewichtskonstanten wichtig	274		Mechanismen der nucleophilen	262
	Gleichgewichtskonstanten sind temperaturabhängig	276		Substitution	303
	Einführung in die Kinetik: Wie wir Reaktionen schneller und sauberer	270		Mechanismus (S _N 1 oder S _N 2) bei einer bestimmten organischen Verbindung auftritt?	368
	ablaufen lassen			Eine genauere Betrachtung der S _N 1- Reaktion	369
	Katalyse bei Substitutionsreaktionen an Carbonylgruppen			Eine genauere Betrachtung der S _N 2-	
	Kinetische gegen thermodynamische	291		Reaktion	376
	Produkte	294		Unterschiede zwischen S _N 1- und S _N 2- Reaktionen	379
	Zusammenfassung von Mechanismen aus den Kapiteln 6–12	296		Die Abgangsgruppe bei S _N 1- und S _N 2- Reaktionen	385
	Weiterführende Literatur	297		Das Nucleophil bei S _N 1-Reaktionen	390
12	¹ H-NMR: Protonen-Kernmagnetresonanz-			Das Nucleophil bei S _N 2-Reaktionen	391
	Spektroskopie	299		Nucleophile und Abgangsgruppen im Vergleich	396
•	Die Unterschiede zwischen ¹³ C- und ¹ H-NMR-Spektroskopie	299		Ausblick: Eliminierungs- und	
	Integration verrät uns die Zahl der Wasserstoffatome in jedem Peak	300		Umlagerungsreaktionen	
	Bereiche des ¹H-NMR-Spektrums	302	16	Konformationsanalyse	200
	Protonen an gesättigten Kohlenstoffatomen	303	10	Drehung um Bindungen ermöglicht es	327
	Die Alkenregion und die Benzolregion	308		Atomketten, mehrere Konformationen einzunehmen	399
	Die Aldehydregion: ungesättigte, an			Konformation und Konfiguration	400
	Sauerstoff gebundene Kohlenstoffatome	313		Rotationsbarrieren	401
	Protonen an Heteroatomen haben variablere Verschiebungen als			Konformationen von Ethan	402
	Protonen an Kohlenstoffatomen	314		Konformationen von Propan	404
	Kopplung im ¹ H-NMR-Spektrum	317		Konformationen von Butan	404
	Zusammenfassung	332		Ringspannung	406
	Weiterführende Literatur	332	٠	Nähere Betrachtung von Cyclohexan	410
14	Stereochemie	333		Substituierte Cyclohexane	
	Manche Verbindungen können als			Zum Abschluss	
	Paare von Spiegelbildern vorliegen	333		Weiterführende Literatur	423
	Diastereoisomere sind Stereoisomere, die keine Enantiomere sind	343	17	Eliminierungsreaktionen	
	Chirale Verbindungen ohne			Substitution und Eliminierung	425
	stereogene Zentren			Wie das Nucleophil die Wahl zwischen Eliminierung und Substitution	
	Jymmetricachisen and -zentren	JJ4		beeinflusst	427

	E1- und E2-Mechanismus	429		Elektrophile Additionen an Alkene	
•	Die Struktur des Substrats kann E1-			können stereospezifisch sein	487
	Reaktionen ermöglichen			Addition zweier Hydroxylgruppen: Dihydroxylierung	400
	Die Rolle der Abgangsgruppe	433		• •	490
	E1-Reaktionen können stereoselektiv			Vollständiger Bruch einer Doppelbindung: Periodatspaltung und	
	sein	435		Ozonolyse	491
	E2-Eliminierungen haben antiperiplanare Übergangszustände	420		Addition einer Hydroxylgruppe:	
				Wie Wasser an eine Doppelbindung	
		442		addiert wird	492
	Anionenstabilisierende Gruppen erlauben einen anderen Mechanismus:			Zum Abschluss: eine Übersicht elektrophiler Additionsreaktionen	405
	Е1сВ	443		Weiterführende Literatur	
	Zum Abschluss	448		Weiterfulliende Literatur	470
	Weiterführende Literatur	450	20	Herstellung und Reaktionen von Enolen und Enolaten	497
18	Spektroskopische Methoden – ein			Eine Mischung von Verbindungen als	
	Überblick	451		Reinsubstanz?	497
	Gründe für dieses Kapitel	451		Tautomerie: Bildung von Enolen durch	
	Spektroskopie und Carbonylchemie	452		Protontransfer	498
	Säurederivate lassen sich am besten			Warum gibt es einfache Aldehyde und Ketone nicht als Enole?	400
	durch Infrarot-Spektroskopie unterscheiden	455		Nachweis für das Gleichgewicht	499
	Kleine Ringe führen zu Spannung	433		von Carbonylverbindungen und Enolen	499
	innerhalb des Rings und zu einem			Enolisierung wird durch Säuren und	
	stärkeren s-Charakter außerhalb	457		Basen katalysiert	500
	Einfache Berechnungen von C=O-			Ein Enolat-Ion ist die Zwischenstufe	
	Streckfrequenzen in IR-Spektren	458		bei der basekatalysierten Reaktion	501
	NMR-Spektren von Alkinen und kleinen Ringen	458		Zusammenfassung: Arten von Enolen und Enolaten	50-
	Die ¹H-NMR-Spektroskopie	750			
	unterscheidet axiale und äquatoriale			Stabile Enole	
	Protonen in Cyclohexanen	460		Folgen der Enolisierung	507
	Wechselwirkungen zwischen			Reaktion mit Enolen oder Enolaten als Zwischenstufen	509
	unterschiedlichen Kernen können zu gewaltigen Kopplungskonstanten			Stabile Äquivalente von Enolat-Ionen	
	führen	460		Reaktionen von Enolen und Enolaten	J 14
	Spektroskopische Identifizierung von			am Sauerstoffatom: Herstellung von	
	Produkten	464		Enolethern	515
	Tabellen	468		Reaktionen von Enolethern	516
	Weiterführende Literatur	473		Zum Abschluss	519
19	Elektrophile Addition an Alkene	475		Weiterführende Literatur	519
	Alkene reagieren mit Brom	475	21	Elektrophile aromatische Substitution	52 1
	Oxidation von Alkenen zu Epoxiden	477		Einführung: Enole und Phenole	52 1
	Die elektrophile Addition an			Benzol und seine Reaktionen mit	
	unsymmetrische Alkene ist regioselektiv	481		Elektrophilen	523
	Elektrophile Addition an Diene	483		Elektrophile Substitution an Phenolen	529
	Unsymmetrische Bromonium-Ionen öffnen sich regioselektiv	484		Das freie Elektronenpaar von Stickstoff	53

	Alkylbenzole reagieren ebenfalls in		Selektivität bei Oxidationsreaktionen 600
	der ortho- und para-Position	535	Konkurrierende Reaktivität: Auswahl
	Elektronenziehende Substituenten		der reagierenden Gruppen 603
	führen zu <i>meta-</i> Produkten	538	Überblick über Schutzgruppen 606
	Halogene wirken elektronenschiebend	5.40	Zum Abschluss 617
	und -ziehend zugleich	540	Weiterführende Literatur 618
	Zwei oder mehr Substituenten können kooperieren oder konkurrieren	547	
	Einige Probleme und einige	24	Regioselektivität 619
	Möglichkeiten	544	Einführung 619
	Eine nähere Betrachtung der Friedel-		Die Regioselektivität bei der
	Crafts-Chemie	544	elektrophilen aromatischen Substitution 620
	Anwendungen der Chemie der		Elektrophiler Angriff an Alkenen 628
	Nitrogruppe	546	Regioselektivität bei Radikalreaktionen 629
	Zusammenfassung	547	Nucleophiler Angriff an
	Weiterführende Literatur	549	Allylverbindungen 632
			Elektrophiler Angriff an konjugierten
22	Konjugierte Addition und nucleophile aromatische Substitution	FF1	Dienen 638
		331	Konjugierte Addition 640
	Mit Carbonylgruppen konjugierte Alkene	551	Die Regioselektivität in Anwendung 641
	Konjugierte Alkene können elektrophil	331	Weiterführende Literatur 642
	sein	⁵⁵³ 25	Allediamor van Englaten
	Zusammenfassung: Faktoren, die die	25	···· , ································
	konjugierte Addition steuern	564	Carbonylgruppen weisen unterschiedliche Reaktivität auf 643
	Einbeziehung anderer		Einige wichtige Betrachtungen, die
	elektronenarmer Alkene in die Reaktion	564	alle Alkylierungen betreffen 644
	Konjugierte Substitution	566	Nitrile und Nitroalkane können
	Nucleophile Epoxidierung	567	alkyliert werden 644
	Nucleophile aromatische Substitution $\ \dots$	569	Die Wahl des Elektrophils für die
	Der Additions-Eliminierungs-		Alkylierung 647
	Mechanismus	569	Lithiumenolate von Carbonylverbindungen 647
	Der S _N 1-Mechanismus der nucleophilen		Alkylierungen von Lithiumenolaten 648
	aromatischen Substitution –		Verwendung spezieller Enol-
	Diazoniumverbindungen	575	Äquivalente zur Alkylierung von
	Der Dehydrobenzol-Mechanismus	577	Aldehyden und Ketonen 651
	Zum Abschluss	581	Alkylierung von
	Weiterführende Literatur	582	β-Dicarbonylverbindungen 655
	Characteristic and Calmanana	500	Die Alkylierung von Ketonen und die Regioselektivität
23	Chemoselektivität und Schutzgruppen		Enone liefern eine Lösung für
	Selektivität		Probleme der Regioselektivität 662
	Reduktionsmittel		Verwendung von Michael-Akzeptoren
	Reduktion von Carbonylgruppen	585	als Elektrophile 666
	Wasserstoff als Reduktionsmittel:	500	Zum Abschluss 674
	katalytische Hydrierung		Weiterführende Literatur 675
	Entfernung von funktionellen Gruppen	596	
	Reduktionen mit sich auflösenden		

Metallen 598

20	verbindungen: Aldol- und Ciaisen-			regiospezifisch und gerüstaufbauend	754
	Reaktionen	677		Stereospezifische Eliminierungen	
	Einführung	678		können reine einzelne Isomere von	756
	Die Aldofreaktion	678		Alkenen ergeben	/30
	Kreuzkondensationen	682		Vielleicht die wichtigste Alkensynthese: die Wittig-Reaktion	757
	Spezielle Enol-Äquivalente können			Zum Abschluss	
	zur Steuerung von Aldolreaktionen verwendet werden	688		Weiterführende Literatur	761
	Wie Aldolreaktionen von Estern	000			
	gesteuert werden	695	28	Retrosynthetische Analyse	763
	Wie Aldolreaktionen von Aldehyden			Kreative Chemie	763
	gesteuert werden	696		Retrosynthetische Analyse: Rückwärtssynthese	761
	Wie Aldolreaktionen von Ketonen gesteuert werden	600		Zerlegungen müssen zu bekannten,	/04
				zuverlässigen Reaktionen führen	764
	Intramolekulare Aldolreaktionen			Synthone sind idealisierte Reagenzien	
	Acylierung am Kohlenstoffatom			Mehrstufige Synthesen: Vermeiden Sie	
	Gekreuzte Esterkondensationen	708		Probleme mit der Chemoselektivität	768
	Zusammenfassung: Herstellung von Ketoestern über die Claisen-Reaktion	712		Umwandlung von funktionellen Gruppen	769
	Steuerung der Acylierung mit speziellen Enol-Äquivalenten	713		Zwei-Gruppen-Zerlegungen sind besser als Ein-Gruppen-Zerlegungen	777
	Intramolekulare gekreuzte Claisen- Esterkondensationen	718		C-C-Zerlegungen	
	Carbonylchemie – wohin als Nächstes?			Verfügbarkeit von Ausgangssubstanzen	781
	Weiterführende Literatur			Donor- und Akzeptorsynthone	781
	<u>.</u>			Zwei-Gruppen-C-C-Zerlegungen	782
27	Schwefel, Silicium und Phosphor in der organischen Chemie	721		Funktionelle Gruppen in 1,5-Stellung	789
	•			"Natürliche Reaktivität" und	
	Nützliche Hauptgruppenelemente			"Umpolung"	
	Schwefel: ein Element der Widersprüche			Zum Abschluss	
	Schwefelstabilisierte Anionen			Weiterführende Literatur	793
	Sulfoniumsalze		29	Aromatische Heterocyclen 1: Reaktionen	795
	Sulfonium-Ylide			Die Aromatizität bleibt erhalten,	
	Silicium und Kohlenstoff im Vergleich			wenn Teile des Benzolrings durch	
	Allylsilane als Nucleophile			Stickstoffatome ersetzt werden	796
	Die selektive Synthese von Alkenen	744		Pyridin ist ein sehr reaktionsträges aromatisches Imin	700
	Die Eigenschaften von Alkenen hängen von ihrer Geometrie ab	745		Sechsgliedrige aromatische	7 70
	Ausnutzen cyclischer Verbindungen			Heterocyclen mit Sauerstoffatom	805
	Gleichgewichtseinstellung bei Alkenen			Fünfgliedrige aromatische	
	E- und Z-Alkene lassen sich durch	/ _, +0		Heterocyclen gehen leicht elektrophile Substitutionen ein	805
	stereoselektive Addition an Alkine	_		Furan und Thiophen: Sauerstoff- und	
	erzeugen	749		Schwefelanaloga von Pyrrol	808
	Durch stereoselektive Eliminierungsreaktionen können			Weitere Reaktionen fünfgliedriger	
	überwiegend F-Alkene gehildet werden	752		Heterocyclen	811

	Fünfringe mit zwei oder mehr		Konformation gesättigter Heterocyclen 872
	Stickstoffatomen 814		Herstellung von Heterocyclen:
	Mit Benzol anellierte Heterocyclen 819		Ringschlussreaktionen 883
	Sechsringe mit weiteren		Ringgröße und NMR-Spektren 893
	Stickstoffatomen 822		Geminale (² <i>J</i> -) Kopplung 897
	Mit Pyridin anellierte Ringe: Chinoline		Diastereotope Gruppen 900
	und Isochinoline		Zusammenfassung 904
	Aromatische Heterocyclen können mehrere Stickstoffatome, jedoch nur		Weiterführende Literatur 904
	ein Schwefel- oder Sauerstoffatom im		
	Ring enthalten 827	32	Stereoselektivität bei cyclischen Molekülen 905
	Es gibt Tausende weiterer Heterocyclen 827		
	Welche Heterocyclen sollten Sie sich		Einleitung
	merken? 828		Stereochemische Kontrolle bei sechsgliedrigen Ringen 906
	Weiterführende Literatur		Reaktionen an kleinen Ringen 913
	Weiter fulliende Eiteratur		_
30	Aromatische Heterocyclen 2: Synthese 831		Regiochemische Kontrolle bei Cyclohexenepoxiden
	Die Thermodynamik kommt uns zu Hilfe 832		Stereoselektivität bei bicyclischen
	Zuerst kommt die Zerlegung der		Verbindungen 920
	Kohlenstoff-Heteroatom-Bindung 832		Anellierte bicyclische Verbindungen 922
	Pyrrole, Thiophene und Furane		Spirocyclische Verbindungen 928
	aus 1,4-Dicarbonylverbindungen 834		Reaktionen mit cyclischen
	Herstellung von Pyridinen: die		Zwischenstufen oder cyclischen
	Hantzsch-Pyridinsynthese 838		Übergangszuständen 928
	Pyrazole und Pyridazine aus Hydrazin und Dicarbonylverbindungen 842		Zusammenfassung 933
	Pyrimidine können aus		Weiterführende Literatur 933
	1,3-Dicarbonylverbindungen		Diastereoselektivität 935
	und Amidinen hergestellt werden 845	33	
	Bei unsymmetrischen Nucleophilen		Rückblick 935
	gibt es ein Problem mit der Selektivität 846		Prochiralität 939
	Isoxazole werden aus Hydroxylamin oder durch Cycloaddition hergestellt 847		Additionen an Carbonylgruppen können auch ohne Ringe
	Auch Tetrazole und Triazole werden		diastereoselektiv sein 942
	durch Cycloadditionen hergestellt 849		Stereoselektive Reaktionen acyclischer
	Die Fischer-Indolsynthese 851		Alkene 949
	Chinoline und Isochinoline 855		Aldolreaktionen können stereoselektiv
	Mehr Heteroatome in anellierten		sein 952
	Ringen bedeuten mehr Möglichkeiten		Einzelne Diastereoisomere aus
	bei Synthesereaktionen 859		diastereoselektiven Reaktionen 955
	Zusammenfassung: die drei		Ausblick 960
	wichtigsten Methoden zur Synthese		Weiterführende Literatur 960
	aromatischer Heterocyclen 860	24	Pericyclische Reaktionen 1:
	Weiterführende Literatur 863	34	Cycloadditionen
31	Gesättigte Heterocyclen und		Eine neuer Reaktionstyp 961
	stereoelektronische Effekte 865		Allgemeine Beschreibung der Diels-
	Einführung 865		Alder-Reaktion 963
	Reaktionen gesättigter Heterocyclen 867		

	Die Darstellung von Cycloadditionen durch Grenzorbitale		Die Wanderung zum Sauerstoffatom – Baeyer-Villiger-Reaktion
	Die Regioselektivität bei Diels-Alder-		Die Beckmann-Umlagerung 1050
	Reaktionen 973	2	Polarisierung von C-C-Bindungen
	Die Beschreibung der Diels-Alder-		fördert die Fragmentierung 1053
	Reaktion mit den Woodward-		Fragmentierungen werden durch die
	Hoffmann-Regeln 970	6	Stereochemie gesteuert 1055
	Abfangen reaktiver Zwischenstufen	•	Ringerweiterung durch
	durch Cycloadditionen		Fragmentierung 1057
	Weitere thermische Cycloadditionen 97		Steuerung von Doppelbindungen
	Photochemische [2+2]-Cycloadditionen . 98.		mittels Fragmentierung 1059
	Thermische [2+2]-Cycloadditionen 98	4	Die Synthese von Nootkaton – ein
	Bildung fünfgliedriger Ringe:	_	Vorzeigeprojekt für Fragmentierungen 1059
	1,3-dipolare Cycloadditionen 98	57	Ausblick
	Zwei sehr wichtige Synthesereaktionen: Cycloaddition		Weiterführende Literatur 1062
	von Alkenen mit Osmiumtetroxid und	37	Radikalreaktionen 1063
	mit Ozon 99	1	Radikale haben ungepaarte Elektronen 1063
	Zusammenfassung: Cycloadditionen 99)4	Radikale entstehen durch Homolyse
	Weiterführende Literatur 99	14	schwacher Bindungen
~-	Desire ellecte a Destalence 2 since strong		Die meisten Radikale sind äußerst
35	Pericyclische Reaktionen 2: sigmatrope Umlagerungen und elektrocyclische		reaktiv
	Reaktionen)5	Analyse der Struktur von Radikalen –
	Sigmatrope Umlagerungen 99	95	Elektronenspinresonanz 1069
	Die Beschreibung von	. •	Stabilität von Radikalen 1071
	[3,3]-sigmatropen Umlagerungen		Wie reagieren Radikale? 1073
	anhand von Orbitalen 99	98	Radikal-Radikal-Reaktionen 1074
	Die Steuerung von [3,3]-sigmatropen	_	Radikalkettenreaktionen 1079
	Umlagerungen 100		Chlorierung von Alkanen 1080
	[2,3]-sigmatrope Umlagerungen 100)4	Allylbromierung 1084
	[1,5]-sigmatrope	16	Umkehrung der Selektivität:
	Wasserstoffverschiebungen		radikalische Substitution von Brom
	Elektrocyclische Reaktionen 101		durch Wasserstoff 1085
	Weiterführende Literatur 101	19	Die Bildung von Kohlenstoff- Kohlenstoff-Bindungen mit Radikalen 1087
36	Nachbargruppenbeteiligung, Umlagerung		Das Reaktivitätsmuster von Radikalen
	und Fragmentierung 102	21	ist ganz anders als das von polaren
	Nachbargruppen können		Reagenzien 1093
	Substitutionsreaktionen beschleunigen 102	22	Bildung von Alkylradikalen aus
	Umlagerungen erfolgen, wenn eine		Boranen und Sauerstoff 1094
	beteiligte Gruppe schließlich an ein anderes Atom gebunden wird 102	28	Intramolekulare Radikalreaktionen
	Carbokationen lagern sich leicht um 103		sind effektiver als intermolekulare Radikalreaktionen
			Ausblick
	Die Pinakol-Umlagerung		Weiterführende Literatur
	Die Dienon-Phenol-Umlagerung 104		weiterfulliende Literatur
	Die Benzilsäure-Umlagerung 104		
	Die Favorskii-Umlagerung 104	42	

38	Synthese und Reaktionen von Carbenen	1099		Palladium ist das Metall,
	Diazomethan bildet aus Carbonsäuren Methylester	1099		das am häufigsten bei der homogenen Katalyse
	Photolyse von Diazomethan führt zu			verwendet wird
	einem Carben	1101		Die Heck-Reaktion kuppelt ein
	Wie weisen wir nach, dass Carbene			organisches Halogenid oder Triflat und
	existieren?	1102		ein Alken
				Kreuzkupplung von metallorganischen
	Wege zur Bildung von Carbenen	1102		Reagenzien und Halogeniden 1188
	Carbene können in zwei Gruppen eingeteilt werden	1107		Allylische Elektrophile werden durch Palladium(0) aktiviert
	Wie reagieren Carbene?	1110		Palladiumkatalysierte Aminierung
	Carbene reagieren mit Alkenen unter			aromatischer Ringe 1199
	Bildung von Cyclopropanen	1111		An Palladium(II) koordinierte Alkene
	Insertion in C-H-Bindungen			werden von Nucleophilen angegriffen 1202
	Umlagerungsreaktionen			Palladiumkatalyse bei der Totalsynthese
	Nitrene sind die Stickstoffanaloga von			eines natürlichen Alkaloids 1205
	Carbenen	1119		Eine Übersicht zu einigen weiteren
	Metathese von Alkenen	1121		Übergangsmetallen 1206
	Zusammenfassung	1125		Weiterführende Literatur 1208
	Weiterführende Literatur			
			41	Asymmetrische Synthese 1209
39	Aufklärung von Reaktionsmechanismen	1127		Die Natur ist asymmetrisch 1209
	Es gibt Mechanismen und			Der chirale Pool: chirale Zentren "von
	Mechanismen	1127		der Stange" der Natur 1211
	Aufklärung von			Racematspaltung kann zur Trennung
	Reaktionsmechanismen:			von Enantiomeren eingesetzt werden 1214
	die Cannizzaro-Reaktion	. 1129		Chirale Hilfsstoffe
	Sich der Struktur des Produkts sicher sein	1124		Chirale Reagenzien 1221
				Asymmetrische Katalyse 1222
	Systematische strukturelle Variation			Asymmetrische Bildung von
	Die Hammett-Beziehung	. 1140		Kohlenstoff-Kohlenstoff-Bindungen 1235
	Andere kinetische Hinweise auf			Asymmetrische Aldolreaktionen 1238
	Reaktionsmechanismen	. 1150		
	Säure- und Basekatalyse	. 1154		Enzyme als Katalysatoren 1241
	Der Nachweis von Zwischenstufen	. 1161		Weiterführende Literatur 1243
	Stereochemie und Mechanismus	. 1165	42	Organische Chemie des Lebens 1245
	Zusammenfassung: Methoden für die	4470		Primärmetabolismus 1245
	Aufklärung von Mechanismen			Nucleinsäuren spielen eine
	Weiterführende Literatur	. 1171		Schlüsselrolle für alles Leben 1246
40	Matallarganische Chamie	1170		Proteine sind aus Aminosäuren
40		. 11/3		aufgebaut 1250
	Übergangsmetalle erweitern die			Zucker – nur Energiequellen? 1254
	Bandbreite organischer Reaktionen			Lipide
	Die 18-Elektronen-Regel	. 1174		•
	Bindungsverhältnisse und Reaktionen			Mechanismen der biologischen Chemie 1261
	von Übergangsmetallkomplexen	. 1177		Naturstoffe 1268

	Fettsäuren und andere Polyketide entstehen aus Acetyl-CoA	1273
	Terpene sind flüchtige Substanzen aus Pflanzen	1277
	Weiterführende Literatur	1280
43	Organische Chemie heute	1281
	Wissenschaftlicher Fortschritt entsteht durch Zusammenarbeit verschiedener Disziplinen	1281
	Chemie gegen Viren	1282
	Die Zukunft der organischen Chemie	1291
	Weiterführende Literatur	1294
Bild	dnachweis	1295
Per	riodensystem	1296
Ind	lex	1299