Jean-Pierre Françoise

Oscillations en biologie

Analyse qualitative et modèles

Table des matières

1	$\mathbf{D}\mathbf{y}\mathbf{r}$	namique qualitative et théorie des oscillations	1
	1.1	Les théorèmes fondamentaux : le théorème d'existence et	
		d'unicité des solutions, le lemme de Gronwall, la dépendance	
		régulière en fonction des données initiales et d'un paramètre	1
	1.2	Flot, portrait de phase, points singuliers, section transverse,	
		théorème de redressement du flot, ensemble ω -limite et	
		$\alpha\text{-limite, orbites périodiques et application de premier retour.}$.	4
	1.3	Les champs de vecteurs du plan, exemples de points	
		singuliers, les systèmes conservatifs et dissipatifs, les cycles	
		limites	9
	1.4	Le théorème de Poincaré-Bendixson	13
	1.5	Indice et degré	15
	1.6	La stabilité structurelle	18
	1.7	La notion de forme normale	19
	Prol	blèmes	20
2	La théorie de la stabilité		
	2.1	La stabilité des systèmes linéaires	27
	2.2	La stabilité d'une solution, le cas d'un point singulier et le	
		théorème de Poincaré-Lyapunov	28
	2.3	La méthode directe de Lyapunov	31
	2.4	Les variétés invariantes d'un point singulier	34
	2.5	La stabilité asymptotique d'une solution générale, la stabilité	
		orbitale	39
	2.6	La théorie de Floquet d'une orbite périodique	39
	2.7	Les variétés invariantes d'une orbite périodique	43
	2.8	La phase asymptotique d'une orbite périodique	43
	2.9	Persistance des points singuliers hyperboliques et des	
		orbites périodiques hyperboliques, les variétés invariantes	
		normalement hyperboliques	44

	2.10	Attracteur, bassin d'attraction et multistabilité, points non	40
	D1	errants, stabilité structurelle	48
	Prot	olèmes	49
3	La t	héorie des bifurcations	53
	3.1	Notions de déploiement universel et de codimension d'une	
		bifurcation	53
	3.2	Le théorème de Sotomayor, le pli, la bifurcation transcritique,	
		la fronce et la fourche pour les champs de vecteurs généraux	53
	3.3	Calculs explicites en dimension un	55
		3.3.1 Bifurcation pli pour un système différentiel de	
		dimension un	55
		3.3.2 La bifurcation transcritique pour un système	
		différentiel de dimension un	55
		3.3.3 Bifurcation fronce pour un système différentiel	
		de dimension un	56
	3.4	La théorie des catastrophes de Thom	56
	3.5	La bifurcation de Hopf	61
	3.6	La théorie de Hopf-Takens et la théorie de Bautin	64
	3.7	Bifurcations d'orbites périodiques	69
		3.7.1 La bifurcation pli d'un cycle limite	69
		3.7.2 Bifurcation de cycles limites par déformation continue	
		d'une orbite périodique d'un système périodique	70
		3.7.3 La bifurcation homocline de champs de vecteurs du plan	71
		3.7.4 Le doublement de période	71
	3.8	La bifurcation de Bogdanov-Takens	72
	Prob	blèmes	74
4	Lat	héorie classique des perturbations et les perturbations	
•		ulières	79
	4.1	Un théorème de moyennisation de Fatou	80
	4.2	Existence d'orbites périodiques	82
	4.3	L'approximation au second ordre par la méthode de	-
	1.0	moyennisation pour le cas périodique	83
	4.4	La méthode de moyennisation dans le cas quasi périodique	84
	4.5	Développements asymptotiques et solutions périodiques	87
	4.6	L'approche à deux échelles de temps	88
	4.7	La découverte des oscillations de relaxation	90
	4.8	L'excitabilité d'un attracteur, le système de FitzHugh-Nagumo	92
	4.9	L'approche générale des dynamiques lentes-rapides, les	
		variétés lentes	93
	4.10	Le théorème de Tikhonov	96
		Systèmes lents-rapides génériques, théorie des singularités et	
		formes normales au voisinage des points de décrochage et	
			100

Le modèle de Yanagihara-Noma-Irizawa pour le noeud sinusal . 156

L'initialisation du rythme cardiaque dans le noeud sinusal 157 Arvthmies du noeud auriculo-ventriculaire et applications du

7.5

7.6

7.7

XII Table des matières

7.	8 Quelques modèles physiologiques présentant des oscillations	
	en salves	160
7.	9 Oscillations en salves, quelques exemples mathématiques	163
Pı	roblèmes	165
Littér	ature	167
Index		177