Naturkonstanten in SI-Einheiten

Die numerischen Werte basieren auf den aktuellen Empfehlungen der CODATA.

Größe	Symbol	Wert	Fehler
Vakuumlichtgeschwindigkeit	С	299 792 458 m/s	exakt
Gravitationskonstante	G	$6.6743 \cdot 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$	$1.5 \cdot 10^{-15}$
Elementarladung	e, e_0	$1.602176634\cdot 10^{-19}~\mathrm{C}$	exakt
Plancksche Konstante	h	$6.62607015\cdot 10^{-34}\;\mathrm{J\cdot s}$	exakt
	$\hbar = (2\pi)^{-1}h$	$1.054571817\cdot 10^{-34}\dots J\cdot s$	exakt
Avogadro-Konstante	N_A	$6.02214076\cdot 10^{23}\;\mathrm{mol^{-1}}$	exakt
Faraday-Konstante	$F = N_{\rm A} e_0$	96 485.332 12 C/mol	exakt
Elektronenmasse	$m_{ m e}$	$9.1093837015\cdot 10^{-31}\;\mathrm{kg}$	$2.8 \cdot 10^{-40}$
		0.510 998 95 MeV	$1.5 \cdot 10^{-10}$
Rydberg-Konstante	$R_{\infty} = (2h)^{-1} m_{\rm e} c \alpha^2$	10 973 731.568 16 m ⁻¹	$2.1 \cdot 10^{-5}$
Feinstrukturkonstante	$\alpha = e_0^2 (2\epsilon_0 hc)^{-1}$	0.007 297 352 569 3	$1.1 \cdot 10^{-12}$
	$lpha^{-1}$	137.035 999 084	$2.1 \cdot 10^{-8}$
Elektronenradius	$r_{\rm e} = \hbar (m_{\rm e} c)^{-1} \alpha$	$2.8179403262\cdot 10^{-15}\ \mathrm{m}$	$1.3 \cdot 10^{-24}$
e^- -Compton-Wellenlänge	$\lambda_C = h(m_{\rm e}c)^{-1}$	2.426 310 238 67 · 10 ⁻¹² m	$7.3 \cdot 10^{-22}$
Bohrscher Radius	$a_0 = r_{\rm e} \alpha^{-2}$	5.291 772 109 03 · 10 ⁻¹¹ m	$8 \cdot 10^{-21}$
Atomare Masseneinheit	$u = \frac{1}{12}m(^{12}C)$	$1.6605390666\cdot 10^{-27}\mathrm{kg}$	$5 \cdot 10^{-37}$
Protonenmasse	$m_{\rm p}$	$1.67262192369\cdot 10^{-27}\mathrm{kg}$	$5.1 \cdot 10^{-37}$
		938.272 088 16 MeV	$2.9 \cdot 10^{-7}$
Neutronenmasse	$m_{ m n}$	$1.67492749804\cdot 10^{-27}\mathrm{kg}$	$9.5 \cdot 10^{-37}$
		939.565 420 52 MeV	$5.4 \cdot 10^{-7}$
Magnetisches Flussquantum	$\Phi_0 = h(2e_0)^{-1}$	2.067 833 848 · 10 ⁻¹⁵ Wb	exakt
Spez. Elektronenladung	$-e_0 m_{\rm e}^{-1}$	−175 882 001 076 C/kg	53.0
Bohrsches Magneton	$\mu_{\rm B} = e_0 \ \hbar (2m_{\rm e})^{-1}$	$9.2740100783\cdot 10^{-24}\mathrm{J/T}$	$2.8 \cdot 10^{-33}$
Magn. Moment des Elektrons	$\mu_{ m e}$	$-9.2847647043 \cdot 10^{-24} \text{ J/T}$	$2.8 \cdot 10^{-33}$
Kern-Magneton	$\mu_{\rm N}=e_0\ \hbar(2m_{\rm p})^{-1}$	$5.0507837461\cdot 10^{-27}\mathrm{J/T}$	$1.5 \cdot 10^{-36}$
Magn. Moment des Protons	$\mu_{ m p}$	$1.41060679736\cdot 10^{-26}\ \mathrm{J/T}$	$6 \cdot 10^{-36}$
Gyromagnetisches Verhältnis	$\gamma_{ m p}$	267 522 187.44 rad/s · T	0.11
Von-Klitzing-Konstante	$R_{\rm K} = he_0^{-2}$	$25812.80745\dots\Omega$	exakt
Molare Gaskonstante	$R = N_{\rm A} k_{\rm B}$	8.314462618 J/(mol·K)	exakt
Boltzmann-Konstante	k, k_{B}	$1.380649 \cdot 10^{-23} \text{ J/K}$	exakt
Stefan-Boltzmann-Konstante	$\sigma = \pi^2 k_{\rm B}^4 (60 \ \hbar^3 c^2)^{-1}$	$5.670374419 \cdot 10^{-8} \dots \text{ W/(m}^2 \cdot \text{K}^4)$	exakt
Wiensche Konstante	b	0.002 897 771 955 m · K	exakt
Magnetische Feldkonstante	μ_0	$1.25663706212\cdot10^{-6}\mathrm{N/A^2}$	$1.9 \cdot 10^{-16}$
Elektrische Feldkonstante	$\epsilon_0 = (\mu_0 c^2)^{-1}$	$8.8541878128\cdot 10^{-12}\mathrm{F/m}$	$1.3 \cdot 10^{-21}$

	Inhaltsverzeichnis I	\Longrightarrow
	TabellenverzeichnisXXI	\Longrightarrow
1	Kinematik	\Longrightarrow
2	Dynamik	\Longrightarrow
3	Starre Körper	\Longrightarrow
4	Mikromechanik	\Longrightarrow
5	Gravitation und Relativitätstheorie	\Longrightarrow
6	Mechanik der deformierbaren Körper144	\Longrightarrow
7	Nichtlineare Dynamik, Chaos und Fraktale197	\Longrightarrow
	Formelzeichen Mechanik213	\Longrightarrow
8	Tabellen zur Mechanik214	\Longrightarrow
9	Schwingungen	\Longrightarrow
10	Wellen265	\Longrightarrow
11	Akustik	\Longrightarrow
12	Optik309	\Longrightarrow
	Formelzeichen Schwingungen, Wellen, Akustik und Optik 379	\Longrightarrow
13	Tabellen zu Schwingungen, Akustik und Optik	\Longrightarrow
14	Ladungen und Ströme389	\Longrightarrow
15	Elektrisches und magnetisches Feld405	\Longrightarrow
16	Anwendungen in der Elektrotechnik461	\Longrightarrow
17	Stromleitung in Flüssigkeiten, in Gasen und im Vakuum 505	\Longrightarrow
18	Plasmaphysik526	\Longrightarrow
	Formelzeichen Elektrizitätslehre544	\Longrightarrow
19	Tabellen zur Elektrizitätslehre 546	\Longrightarrow
20	Gleichgewicht und Zustandsgrößen565	\Longrightarrow
21	Wärme, Energieumwandlung und Zustandsänderungen 611	\Longrightarrow
22	Phasenumwandlungen, Reaktionen und Wärmeausgleich 650	\Longrightarrow
	Formelzeichen Wärmelehre 698	\Longrightarrow
23	Tabellen zur Thermodynamik 701	\Longrightarrow
24	Photonen – Elektromagnetische Strahlung und Lichtquanten 733	\Longrightarrow
25	Materiewellen – Wellenmechanik der Teilchen	\Longrightarrow
26	Atom- und Molekülphysik	\Longrightarrow
27	Elementarteilchenphysik – das Standard-Modell 791	\Longrightarrow
28	Kernphysik	\Longrightarrow
29	Festkörperphysik	\Longrightarrow
	Formelzeichen Quantenphysik967	\Longrightarrow
30	Tabellen zur Quantenphysik 972	\Longrightarrow
31	Messungen und Messfehler991	\Longrightarrow
32	Vektorrechnung	\Longrightarrow
33	Differenzial- und Integralrechnung	\Longrightarrow
34	Tabellen zum SI	\Longrightarrow
	Nobelpreisträger für Physik	\Longrightarrow
	Sachwortverzeichnis 1033	\Longrightarrow

Taschenbuch der Physik

Taschenbuch der Physik

Formeln, Tabellen, Übersichten

Herausgegeben von Prof. Dr. Dr. h. c. Horst Stöcker

9. Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 · 42781 Haan-Gruiten

Europa-Nr.: 56740

Herausgeber:

Professor Dr. Dr. $\hbar c$ Horst Stöcker

Judah M. Eisenberg Professor Laureatus an der Goethe-Universität Frankfurt am Main, Gründungsvorstandsvorsitzender und Senior Fellow des FIAS (Frankfurt Institute for Advanced Studies), Gründungsdirektor der FIGSS (Frankfurt International Graduate School of Sciences),

Wissenschaftlicher Geschäftsführer des GSI Helmholtzzentrums für Schwerionenforschung (2007 – 2015).

9. Auflage 2021 Druck 5 4 3 2 1

ISBN 978-3-8085-5877-5

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwendung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

© 2021 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten https://www.europa-lehrmittel.de

Satz: Satzherstellung Dr. Naake, 09212 Limbach-Oberfrohna Umschlaggestaltung: braunwerbeagentur, 42477 Radevormwald Druck: Legatoria Editoriale Giovanni Olivotto S.p.A., 36100 Vicenza (I)

Autoren:

Dr. Christoph Best, von Neumann Institute of Computing, NIC, Forschungsanlage Jülich (Mechanik) mit

Dipl.-Ing. Helmut Kutz, Mauserwerke AG, Oberndorf,

Prof. Dr. Rudolf Pitka, FH Frankfurt

Dr. Kordt Griepenkerl, Uni Frankfurt, (Schwingungen und Wellen, Akustik, Optik) mit

Prof. Dr. Steffen Bohrmann, Hochschule Mannheim,

Dipl.-Phys. Klaus Horn, FH Frankfurt

Dr. Christian Hofmann, Deutsche Bank, (Elektrizität, Magnetismus) mit

Dr. Klaus-Jürgen Lutz, Uni Frankfurt,

Prof. Dr. Rudolf Taute, FH der Telekom, Berlin,

Prof. Dr. Georg Terlecki, FH Rheinland-Pfalz, Abt. Kaiserslautern

Prof. Dr. Christoph Hartnack, Ecole de Mines et Subatech, Nantes (Thermodynamik) mit

Dipl.-Betriebswirt (BA) Jochen Gerber, FH Frankfurt und Arthur D. Little, Schwalbach,

Dr. Ludwig Neise, Uni Frankfurt

Prof. Dr. Alexander Andreeff, ehem. TU Dresden, (Quantenphysik) mit

Dr. Markus Hofmann, Uni Frankfurt und SUN Microsystems,

Dr. Christian Spieles, Uni Frankfurt und Kreditanstalt für Wiederaufbau

Mit Beiträgen von

Prof. Dr. Hans Babovsky, TU Ilmenau,

Dr. Heiner Heng, Freudenberg & Co., Weinheim,

Dipl.-Phys. Frank Heyder, Physikalisches Institut, Frankfurt,

Dr. André Jahns, Uni Frankfurt,

Prof. Dr. Peter Junglas, FHWT Vechta/Diepholz/Oldenburg

Prof. Dr. Karl-Heinz Kampert, Technische Uni und Forschungszentrum Karlsruhe,

Prof. Dr. Ralf Rüdiger Kories, Hochschule für Telekommunikation, Leipzig,

Dipl.-Ing. chem. Imke Krüger-Wiedorn, Naturwissenschaftl.-Techn. Akademie Isny und Byk-Gülden,

St.R. Dipl.-Phys. Christiane Lesny, Uni Frankfurt,

Prof. Dr.-Ing. Holger Lutz, FH Gießen-Friedberg,

Prof. Dr.-Ing. Monika Lutz, FH Gießen-Friedberg,

Dr. Raffaele Mattiello, Uni Frankfurt,

Dr. Jörg Müller, University of Tennessee, Knoxville,

Dr. Jürgen Müller, Denton Vacuum, Inc., und APD Cryogenics, Inc., Frankfurt,

Prof. Dr. Gottfried Münzenberg, Uni Gießen und GSI Darmstadt,

Akad. Oberrat Dr. habil. Helmut Oeschler, TH Darmstadt,

Prof. Dr. Roland Reif, ehem. TU Dresden,

Akad. Oberrat Dr. Joachim Reinhardt, Uni Frankfurt,

Dr. Hans-Georg Reusch, Uni Münster und IBM Wissenschaftliches Zentrum Heidelberg,

Dr. Matthias Rosenstock, Nova Data,

Dr. Wolfgang Schäfer, Bosch-Telekom, Paris,

Prof. Dr. Alwin Schempp, Inst. für Angewandte Physik, Uni Frankfurt,

Prof. Dr.-Ing. Heinz Schmidt-Walter, Hochschule Darmstadt,

Prof. Dr. Bernd Schürmann, Siemens AG, München,

Phys.-Techn. Ass. Astrid Steidl, NTA Isny,

Dr. Jürgen Theis, Infraserv,

Prof. Dr. Thomas Weis, Uni Dortmund,

Prof. Dr.-Ing. Wolfgang Wendt, Hochschule Esslingen,

Dr. Michael Wiedorn, Gesamthochschule Essen und PSI Bern,

Dr. Bernd Wolf, Physikalisches Institut, Uni Frankfurt,

Dr.-Ing. Dieter Zetsche, Vorstandsvorsitzender der Daimler AG, Stuttgart.

Mit zahlreichen Beiträgen aus den Physik-Lehrbuchreihen von

Prof. Dr. Dr. h.c. mult. Walter Greiner, Uni Frankfurt, und

Prof. Dr. h.c. mult. Werner Martienssen, Physikalisches Institut, Frankfurt

Vorwort

Die vielfältigen Anwendungen der Physik bestimmen heute weite Bereiche der Ingenieur- und Naturwissenschaften. In Ausbildung und Praxis wird es daher immer wichtiger, die Grundlagen der Physik und aktueller Messmethoden griffbereit zu haben.

Das **Taschenbuch der Physik** wurde von einem Team erfahrener Hochschuldozenten, Wissenschaftler und in der Praxis stehender Ingenieure unter dem Gesichtspunkt "**Physik griffbereit**" erstellt: Alle wichtigen Formeln, Tabellen und **Anwendungen** sind hier kompakt zusammengestellt.

Das Taschenbuch der Physik vereint

- Basiswissen für Abiturienten, Fachoberschüler und Studenten im Grundstudium,
- Aufbauwissen für fortgeschrittene Studenten und
- den physikalischen **Background** für den **berufstätigen** Ingenieur und Wissenschaftler.

Das Taschenbuch der Physik ist hervorragend geeignet als

- rasch verfügbare Informationsquelle für Klausuren und Prüfungen,
- sicheres Hilfsmittel beim Lösen von Problemen und Übungsaufgaben,
- aktuelles Nachschlagewerk f

 ür den Berufspraktiker.

Jedes Kapitel ist für sich eine selbstständige Einheit und enthält alle wichtigen

- ▲ Begriffe, Formeln, Regeln und Sätze,
- Beispiele und praktische Anwendungen,
- ➤ Hinweise auf wichtige **Fehlerquellen**, Tips und Querverweise,
- **M** wichtige **Messverfahren** für die Praxis sowie

zahlreiche **Tabellen** von Naturkonstanten und Materialeigenschaften.

Hervorzuheben ist die einheitliche Behandlung und Darstellung der physikalischen Begriffe und Formeln: Zu jeder Größe sind alle Eigenschaften wie Messverfahren, wichtige Gesetze, verwandte Größen, Materialkonstanten, SI-Einheiten, Dimensionen, Umwandlungen und Anwendungshinweise zusammengetragen und kompakt dargestellt.

Begriffsboxen erleichtern den schnellen Überblick:

Begriff/Gesetz					Dimension
Formeln	Syml	ol	Einheit	Bene	ennung
Tornen	•••				

Das Taschenbuch der Physik ist – wie das Taschenbuch mathematischer Formeln und moderner Verfahren von H. Stöcker (Hrsg.) – geeignet als Nachschlagewerk zum Lehr- und Lernbuch Physik – Der Grundkurs von R. Pitka, St. Bohrmann, H. Stöcker, G. Terlecki und H. Zetsche.

Vorwort zur neunten Auflage

Wert und Nutzen des *Taschenbuch der Physik* für alle Nutzer in der Lehre, in Schule und Studium und nicht zuletzt in der beruflichen Anwendung sind international anerkannt: Sowohl die französische Ausgabe mit dem wunderbar aussagekräftigen Titel *Toute la Physique* als auch die amerikanisch/englische Ausgabe *Handbook of Physics* finden in den jeweiligen großen Sprachräumen beachtliche, Herausgeber und Verlag erfreuende Resonanz.

Die deutsche Ausgabe wurde aktualisiert, insbesondere wird die grundlegende Änderung des Internationalen Einheitensystems SI berücksichtigt, das seit dem 20. Mai 2019 auf sieben "definierenden Konstanten" basiert. Bereits seit der achten Auflage wird eine zweite Farbe eingesetzt, um die Orientierung in dem umfassenden Referenzwerk noch einmal zu verbessern.

Herausgeber, Autoren und Verlag wünschen ausdrücklich Ihre kritischen und lobenden Hinweise.

Herausgeber und Verlag Europa-Lehrmittel Nourney, Vollmer GmbH & Co. KG Düsselberger Str. 23 42781 Haan-Gruiten lektorat@europa-lehrmittel.de https://www.europa-lehrmittel.de

Inhaltsverzeichnis

lab	ellenve	rzeichnis	XXI
I	Mech	nanik	
1	Kinem	natik	1
1.1		reibung von Bewegungen	1
	1.1.1	Bezugssysteme	
	1.1.2	Zeit	
	1.1.3	Länge, Fläche, Volumen	
	1.1.4	Winkel	
	1.1.5	Mechanische Systeme	
1.2		gung in einer Dimension	11
	1.2.1	Geschwindigkeit	11
		1.2.1.1 Durchschnittsgeschwindigkeit	12
		1.2.1.2 Momentangeschwindigkeit	13
	1.2.2	Beschleunigung	14
	1.2.3	Einfache Bewegungen in einer Dimension	16
1.3	Beweg	gung in mehreren Dimensionen	
	1.3.1	Geschwindigkeitsvektor	20
	1.3.2	Beschleunigungsvektor	22
	1.3.3	Freier Fall und Wurf	25
1.4		ewegung	27
	1.4.1	Winkelgeschwindigkeit	27
	1.4.2	Winkelbeschleunigung	29
	1.4.3	Bahngeschwindigkeit	30
2	Dynan		32
2.1	•	gesetze der Dynamik	32
2.1	2.1.1	Masse und Impuls	32
	2,1,1	2.1.1.1 Masse	32
		2.1.1.2 Impuls	34
	2.1.2	Newtonsche Gesetze	34
	2.1.2	2.1.2.1 Trägheit (Erstes Newtonsches Gesetz)	34
		2.1.2.2 Grundgesetz der Dynamik (Zweites Newtonsches Gesetz)	35
		2.1.2.3 Kraft	36
		2.1.2.4 Reaktionsprinzip (Drittes Newtonsches Gesetz)	37
		2.1.2.5 Trägheitskräfte	38
		2.1.2.6 D'Alembertsches Prinzip	39
		2.1.2.7 Zusammensetzung von Kräften	39
		2.1.2.8 Zerlegung von Kräften	40
	2.1.3	Bahndrehimpuls	43
	2.1.4	Drehmoment	44
	2.1.5	Dynamisches Grundgesetz für Drehbewegungen	46
2.2	Z.1.5 Kräfte	·	47
4.4	2.2.1	Gewichtskraft	47
	2.2.1	Federkräfte und Torsionskräfte	48
	2.2.2	Reibungskräfte	50
	4.4.3	2.2.3.1 Haftreibung	50
		2.2.3.1 Halterbung	
		۵.۵.3.۵ UIGIUGIUUIIY	$\mathcal{J}1$

		ϵ	1
2.3	Träaha	\mathcal{C}	52 53
2.5	2.3.1	\mathcal{E}^{-1}	3
	2.3.1	\mathcal{C}	55
2.4			, <i>3</i> 57
2.7	2.4.1	$oldsymbol{arepsilon}$	7
	2.4.2		; ;9
	2.4.3	ϵ	50
	2.4.4	\boldsymbol{c}	50
	2	8	51
		\mathcal{C}	52
	2.4.5		53
2.5		ϵ	54
2.0	2.5.1	8	54
2.6		6.6	55
	2.6.1		7
	2.6.2	, 6	8
	2.6.3	, , ,	59
	2.6.4		1
			1
			1
2.7	Rakete		- 1
	2.7.1		2
	2.7.2		13
2.8	Masser		4
	2.8.1		4
	2.8.2		6
	2.8.3		7
	2.8.4		7
2.9	Lagran	ge- und Hamilton-Gleichungen	8
	2.9.1		8
	2.9.2	Hamilton-Gleichungen 8	31
3	Starre	Körper 8	3
3.1		· · · · · · · · · · · · · · · · · · ·	3
	3.1.1		33
	3.1.2		33
	3.1.3	1	35
3.2			37
	3.2.1		37
	3.2.2		9
	3.2.3		1
	3.2.4	1	2
	3.2.5)4
)4
)4
	3.2.6)5
)5
			6
		3.2.6.3 Rollen 9	7

				Inhaltsverzeichnis	III
3.3	Dynan	nik			100
3.4	•		und Drehimpuls		100
J. T	3.4.1		rägheitsmoment		100
	3.4.1	3.4.1.1	Satz von Steiner		100
		3.4.1.1	Trägheitsmomente geometrischer Körper		102
	3.4.2		ouls		105
	3.4.2	3.4.2.1	Gleichgewicht bei Drehbewegungen		105
3.5	Arbait		nd Leistung		106
3.3	3.5.1		he Energie		107
	3.5.2		lle Energie der Torsion		107
3.6					109
5.0	3.6.1		stensor		110
	3.6.2	_	und Präzession		110
	3.0.2	3.6.2.1	Nutation		112
		3.6.2.1	Präzession		113
		3.6.2.3	Kreiselmomente		115
	3.6.3		ungen von Kreiseln		115
			ungen von Kreisem		
4		mechanik			117
4.1			nik		117
4.2			Ätzverfahren		118
4.3		_			119
	4.3.1		1		119
	4.3.2				121
	4.3.3	Techniso	he Anwendungen		121
5	Gravit	tation und	Relativitätstheorie		123
5.1	Gravita	ationsfeld.			123
	5.1.1	Gravitati	onsgesetz		123
	5.1.2	Planeten	bewegung		125
	5.1.3		system		126
		5.1.3.1	Sonne und Planeten		126
		5.1.3.2	Satelliten		129
5.2	Spezie	lle Relativi	tätstheorie		130
	5.2.1	Relativit	ätsprinzip		130
	5.2.2	Lorentz-	Transformation		132
		5.2.2.1	Addition der Geschwindigkeit		135
	5.2.3	Relativis	tische Effekte		136
		5.2.3.1	Längenkontraktion		136
		5.2.3.2	Zeitdilatation		137
	5.2.4	Relativis	tische Dynamik		137
		5.2.4.1	Relativistische Massenzunahme		137
		5.2.4.2	Relativistische kinetische Energie		139
5.3	Allgen		ivitätstheorie und Kosmologie		140
	5.3.1	Sterne u	nd Galaxien		141
		5.3.1.1	Sternentwicklung		142
6	Mecha	anik der de	eformierbaren Körper		144
6.1	Elastiz	itätslehre .			144
	6.1.1	Spannun	g		144
		6.1.1.1	Zug, Biegung, Scherung, Torsion		145

	6.1.2	Elastische Verformung
	0.1.2	C
		\mathcal{E}
		6
		6.1.2.3 Allseitige Kompression
		6.1.2.4 Biegung eines Stabes (Balkens)
		6.1.2.5 Scherung
		6.1.2.6 Torsion
		6.1.2.7 Energie und Arbeit bei Verformungen
	6.1.3	Plastische Verformung
		6.1.3.1 Bereiche bei Zugbelastung
		6.1.3.2 Knickung
		6.1.3.3 Härte
6.2	Hydros	tatik, Aerostatik
0.2	6.2.1	Flüssigkeiten und Gase
	6.2.2	Druck
	0.2.2	
		6.2.2.2 Schweredruck in Flüssigkeiten
		6.2.2.3 Kompressibilität
		6.2.2.4 Schweredruck in Gasen
		6.2.2.5 Pumpen
	6.2.3	Auftrieb
	6.2.4	Kohäsion, Adhäsion, Oberflächenspannung
		6.2.4.1 Kapillarität
6.3	Hydrod	ynamik, Aerodynamik 174
	6.3.1	Strömungsfeld
	6.3.2	Grundgleichungen idealer Strömungen
		6.3.2.1 Kontinuitätsgleichung
		6.3.2.2 Eulersche Gleichung
		6.3.2.3 Gesetz von Bernoulli
		6.3.2.4 Torricellisches Ausflussgesetz
		6.3.2.5 Saugeffekte
		6.3.2.6 Auftrieb an umströmten Körpern
	6.3.3	Reale Strömungen
	0.5.5	e
		C
		· · · · · · · · · · · · · · · · · · ·
		6.3.3.3 Laminare Strömung in einem Rohr
		6.3.3.4 Umströmung einer Kugel
		6.3.3.5 Bernoulli-Gleichung
	6.3.4	Turbulente Strömungen
		6.3.4.1 Widerstandsbeiwert
	6.3.5	Ähnlichkeitsgesetze
		6.3.5.1 Rohrreibung
	6.3.6	Strömungen mit Dichteänderungen
7	Nichtli	neare Dynamik, Chaos und Fraktale 197
7.1		ische Systeme und Chaos
/ • 1	7.1.1	Dynamische Systeme
	7.1.1	J J
	712	
	7.1.2	Konservative Systeme
		7.1.2.1 Satz von Liouville
		7.1.2.2 Integrabilität

	7.1.3	Dissipative Systeme
7.2	Bifurka	tionen
	7.2.1	Logistische Abbildung
	7.2.2	Universalität
7.3	Fraktale	e
Form	elzeiche	n Mechanik
8	Tabelle	en zur Mechanik
8.1		
	8.1.1	Festkörper
		8.1.1.1 Metallische Legierungen
		8.1.1.2 Nichtmetalle
	8.1.2	Flüssigkeiten
	8.1.3	Gase
8.2	Elastisc	che Eigenschaften
8.3	Dynam	ische Eigenschaften
	8.3.1	Reibungszahlen
	8.3.2	Kompressibilität
		8.3.2.1 Gase
		8.3.2.2 Flüssigkeiten und Festkörper
	8.3.3	Viskosität
	8.3.4	Strömungswiderstand
	8.3.5	Oberflächenspannung
II	Schwi	ingungen, Wellen, Akustik und Optik
9	Schwin	ngungen
9.1	Freie u	ngedämpfte Schwingungen
	9.1.1	Federpendel
	9.1.2	Fadenpendel
	9.1.3	Physisches Pendel
	9.1.4	Torsionsschwingung
	9.1.5	Flüssigkeitspendel
	9.1.6	Elektrischer Schwingkreis
9.2	Gedäm	pfte Schwingungen
	9.2.1	Reibung
		9.2.1.1 Gleitreibung und Rollreibung
		9.2.1.2 Viskose Reibung
		9.2.1.3 Newtonsche Reibung
	9.2.2	Gedämpfter elektrischer Schwingkreis
9.3		gene Schwingungen
9.4	_	gerung von Schwingungen
	9.4.1	Überlagerung von Schwingungen gleicher Frequenz
	9.4.2	Überlagerung von Schwingungen ungleicher Frequenz
	9.4.3	Überlagerung von Schwingungen in ungleicher Richtung und mit verschiedener Frequenz
	9.4.4	Fourier-Analyse, Zerlegung nach Schwingungen

10	Wellen		265
10.1		egende Eigenschaften von Wellen	265
10.2	Polarisa	tion	271
10.3	Interfere	enz	271
	10.3.1	Kohärenz	271
	10.3.2	Interferenz	272
	10.3.3	Stehende Wellen	273
		10.3.3.1 Stehende Wellen in einseitig eingespannten Stäben	274
		10.3.3.2 Stehende Wellen auf Saiten	275
		10.3.3.3 Stehende Wellen im Kundtschen Rohr	275
	10.3.4	Wellen mit unterschiedlichen Frequenzen	276
10.4	Dopplei	r-Effekt	277
	10.4.1	Mach-Wellen und Mach-Stoßwellen	278
10.5	Brechur	ng	279
10.6	Reflexio	000	280
	10.6.1	Phasenbeziehungen	280
10.7	Dispers	ion	281
10.8		g	281
	10.8.1	Beugung am Spalt	282
	10.8.2	Beugung am Gitter	283
10.9	Modula	tion von Wellen	284
10.10		chenwellen und Schwerewellen	285
11	Akustik		287
11.1		vellen	287
11.1	11.1.1	Schallgeschwindigkeit	287
	11.1.2	Schallkenngrößen	288
	111112	11.1.2.1 Schallausschlag	290
		11.1.2.2 Schallschnelle und Wellenwiderstand	290
		11.1.2.3 Energiedichte	291
		11.1.2.4 Schallintensität und Schallleistung	291
	11.1.3	Verhältnisgrößen	292
11.2		uellen und Schallempfänger	294
11.2	11.2.1	Mechanische Schallsender	294
	11.2.1	11.2.1.1 Schwingende Luftsäulen	295
	11.2.2	Elektroakustische Schallwandler	296
	111-1-	11.2.2.1 Schallempfänger oder Mikrophone	297
	11.2.3	Schallabsorption	299
	11.2.4	Schalldämmung	301
	111211	11.2.4.1 Nachhall	302
	11.2.5	Strömungsgeräusch	302
11.3		nall	302
11.4		ogische Akustik und das Gehör	303
	11.4.1	Schallempfindung	304
	11.4.2	Bewertete Schallpegel	305
11.5		lische Akustik	305
12			309
12.1	Optik Geomet	rische Optik	310
14.1	12.1.1		
	14.1.1	Optische Abbildung – Grundbegriffe	312

		Inhaltsverzeichnis V	/II
	12.1.2	Reflexion	15
	12,1,2		15
		1 C	16
			19
	12.1.3		19
	12.1.5		19
		E	20
		ε	21
		8 8	22
			23
		ε	23
			2525
			29
		ϵ	31
			32
12.2	Lincon		32
12.2	12.2.1		33
	12.2.1		38
10.2			
12.3			39
	12.3.1		40
	12.3.2	ε	40
10.4	0 1		42
12.4			43
	12.4.1		43
	12.4.2		44
	12.4.3	8	44
	12.4.4	\mathcal{E} 1	46
		1	46
		· · · · · · · · · · · · · · · · · · ·	46
10.5	*** 11		48
12.5			50
	12.5.1	ϵ	50
	12.5.2		51
	12.5.3	e	53
	12.5.4		54
	12.5.5	1	58
			58
		1	58
			59
		C	60
			61
	12.5.6	1	62
	12.5.7	1 11	64
	12.5.8		64
			66
			66
12.6			69
	12.6.1		69
		12.6.1.1 Strahler	71

		12.6.1.2 Spektrale Größen	373
		1	373
	12.6.2	<u> </u>	375
Forme			379
13			381
13.1		1	9 01 381
13.1			385
13.2	Tabellell	1 zur Optik	100
III	Elektr	izitätslehre	
14	Ladung	en und Ströme	389
14.1		$oldsymbol{\mathcal{U}}$	389
	14.1.1	Coulombsches Gesetz	391
14.2	Elektrisc	che Ladungsdichte	392
14.3	Elektrisc	cher Strom	394
	14.3.1	1	395
14.4	Elektriso		396
	14.4.1	\boldsymbol{c}	397
14.5			398
	14.5.1		398
	14.5.2		399
	14.5.3		399
	14.5.4	ε	100
	14.5.5	1 66	101
	14.5.6		102
	14.5.7		103
15			105
15.1			105
15.2			106
	15.2.1		106
15.0		E	110
15.3			110
15.4			111
15.5			112 113
	15.5.1 15.5.2	1 1	+13 +13
	15.5.2		+13 116
	15.5.4		‡10 ‡18
15.6		\boldsymbol{c}	+10 +19
13.0	15.6.1		120
15.7			120 122
10.1	15.7.1		122 122
	15.7.1		123
	15.7.2	ϵ	123
	15.7.4		.23 124
15.8			125
15.9			126
			127
	_		127
	_		128

				Inhaltsverzeichnis	IX
15 12	Magnetis	sche Flusse	dichte		429
	_		S		431
			tärke		433
			nung und magnetischer Kreis		434
13.13					436
			ıngssatztrsches Gesetz		430
					437
		_	d eines geraden Leiters		
15 16			he Felder einiger Stromverteilungen		440
15.16		_	feld		441
			tismus		442
		_	etismus		443
		_	netismus		443
			nagnetismus		446
		_	etismus		447
			r an Grenzflächen		447
15.18					448
			sinduktion		448
			atorische Induktion		449
15.19	Selbsting	duktion			450
	15.19.1	Induktivitä	äten geometrischer Leiteranordnungen		451
	15.19.2	Magnetisc	her Leitwert		452
15.20	Gegenine	duktion			453
	15.20.1	Transform	ator		454
15.21	Energie 1	und Energi	edichte des Magnetfeldes		455
15.22			hungen		457
	15.22.1	Verschiebi	ungsstrom		457
			gnetische Wellen		458
			Vektor		460
16			der Elektrotechnik		461
		U			462
16.1			ash a Casatas in Chiakatas alumia		
			sche Gesetze im Gleichstromkreis		463
			de im Gleichstromkreis		463
		_	nnungsquelle		465
		_	and Energie im Gleichstromkreis		466
			anpassung		468
	16.1.6		d Spannungsmessung		468
			Strommessung		468
			Spannungsmessung		468
		16.1.6.3	Leistungsmessung		469
	16.1.7	Widerstan	dsbestimmung mittels Kompensationsmeth	ode	469
	16.1.8	Auf- und l	Entladung von Kondensatoren		470
			Ausschalten des Stroms im RL-Kreis		472
16.2	Wechsels	stromkreis			473
	16.2.1	Wechselgr	ößen		473
		_	Zeitlicher Mittelwert periodischer Funktion		474
			g von Sinusgrößen im Zeigerdiagramm		475
			geln für Zeigergrößen		477
		_	riffe der Wechselstromtechnik		480
		_	Komplexer Widerstand		480
			-		

		16.2.4.2	Ohmsches Gesetz im Komplexen	481
		16.2.4.3	Komplexer Leitwert	481
			Leistung im Wechselstromkreis	483
		16.2.4.5	Komplexe Leistung	484
		16.2.4.6	Kirchhoffsche Gesetze für Wechselstromkreise	485
		16.2.4.7	Reihenschaltung komplexer Widerstände	485
			Parallelschaltung komplexer Widerstände	485
	16.2.5		elemente im Wechselstromkreis	486
		16.2.5.1	Ohmscher Widerstand	486
			Kapazität	487
			Induktivität	488
			Komplexe Widerstände der einfachsten Zweipole	489
	16.2.6		naltung von Widerstand und Kapazität	489
	16.2.7		haltung von Widerstand und Kapazität	490
	16.2.8		haltung von Widerstand und Induktivität	491
	16.2.9		naltung von Widerstand und Induktivität	492
			nwingkreis	493
			hwingkreishwingkreis	494
			nz von Reihenschaltung und Parallelschaltung	496
		-	len	497
16.3			inen	498
10.5	16.3.1		le Funktionsweise	499
	16.3.1	-	ommaschine	500
	16.3.2		nmaschine	502
	10.5.5		Synchronmaschine	502
			•	503
	~ .		Asynchronmaschine	
1 7		U	lüssigkeiten, in Gasen und im Vakuum	505
17.1		•		505
	17.1.1	_	ge	505
	17.1.2			505
	17.1.3		n	506
	17.1.4	Elektrolyt		506
			Elektrische Leitfähigkeit eines Elektrolyten	506
			Faradaysche Gesetze	508
			Elektrische Doppelschicht	509
			Nernst-Gleichung	510
	17.1.5		the Elemente	510
			Elektrolytische Polarisation	511
		17.1.5.2	Brennstoffelemente	512
			Akkumulatoren	512
			Schaltung galvanischer Elemente	513
	17.1.6	Elektrokir	netische Effekte	513
		17.1.6.1	Elektrophorese	513
		17.1.6.2	Elektroosmose	514
		17.1.6.3	Strömungselektrizität	514
17.2	Stromle	itung in Ga	asen	514
	17.2.1	Unselbsts	tändige Gasentladung	514
		17.2.1.1	Driftgeschwindigkeit von Ionen in Gasen	514
		17.2.1.2	Elektrische Leitfähigkeit von Gasen	515

TZT
ΧΙ
7 7 1

		17.2.1.3 Rekombination	515
		17.2.1.4 Strom-Spannungskennlinie eines Gases	516
	17.2.2	Selbstständige Gasentladung	517
		17.2.2.1 Entladungstypen selbstständiger Gasentladungen	517
		17.2.2.2 Strom-Spannungs-Charakteristik einer Gasentladung	518
17.3	Elektron	nenemission	518
	17.3.1	Glühemission	518
	17.3.2	Photoemission	519
	17.3.3	Feldemission	520
	17.3.4	Sekundärelektronenemission	520
17.4	Elektron	nenröhren	520
	17.4.1	Röhrendiode	521
	17.4.2	Röhrentriode	522
	17.1.2	17.4.2.1 Röhrenkenngrößen	522
	17.4.3	Tetrode	524
	17.4.4	Kathodenstrahlen	524
	17.4.5	Kanalstrahlen	524
18	Plasma		526
18.1	_	haften eines Plasmas	526
	18.1.1	Plasmakenngrößen	526
		18.1.1.1 Ionisationsgrad	526
		18.1.1.2 Verteilungsfunktionen des Plasmas	527
		18.1.1.3 Energieinhalt des Plasmas	529
		18.1.1.4 Elektrische Leitfähigkeit von Plasmen	529
		18.1.1.5 Wärmeleitfähigkeit eines Plasmas	530
		18.1.1.6 Abschirmung und Debye-Länge	530
		18.1.1.7 Plasmaschwingungsfrequenz	531
	18.1.2	Plasmastrahlung	532
	18.1.3	Plasmen in Magnetfeldern	532
		18.1.3.1 Bewegung geladener Teilchen in äußeren Feldern	532
		18.1.3.2 Ladungsträgerbewegung im Magnetfeld mit Stößen	534
		18.1.3.3 Driftbewegung im äußeren elektrischen Feld	534
		18.1.3.4 Kontinuumstheorien	534
	18.1.4	Plasmawellen	535
		18.1.4.1 Plasmaakustische Wellen in Plasmen	535
		18.1.4.2 Magnetohydrodynamische Wellen	536
		18.1.4.3 Elektromagnetische Wellen in Plasmen	536
		18.1.4.4 Landau-Dämpfung	537
18.2	Erzeugu	ing von Plasmen	537
	18.2.1	Thermische Plasmaerzeugung	537
	18.2.2	Plasmaerzeugung durch Kompression	538
		18.2.2.1 Pinch-Effekt	538
18.3	Energie	erzeugung mit Plasmen	539
	18.3.1	MHD-Generator	540
	18.3.2	Kernfusionsreaktoren	540
	18.3.3	Fusion unter magnetischer Halterung	542
	18.3.4	Fusion unter Trägheitseinschluss	542
TD-		<u> </u>	
rorm	eizeicher	n Elektrizitätslehre	544

19	Tabelle	n zur Elektrizitätslehre	546
19.1	Metalle	und Legierungen	546
	19.1.1	Spezifischer elektrischer Widerstand	546
	19.1.2	Spannungsreihen	548
19.2		rika	550
19.3	Praktisc	the Tabellen der Elektrotechnik	556
19.4	Magnet	ische Eigenschaften	558
19.5	Ferroma	agnetische Eigenschaften	560
	19.5.1	Magnetische Anisotropie	562
19.6	Ferrite		563
19.7	Antiferr	comagnete	564
19.8	Ionenbe	eweglichkeit	564
IV	Wärm	nelehre	
20	Gleiche	gewicht und Zustandsgrößen	565
20.1	_	e, Phasen und Gleichgewicht	565
20.1	20.1.1	Systeme	565
	20.1.1	20.1.1.1 Isolierte oder abgeschlossene Systeme	565
		20.1.1.2 Geschlossene Systeme	565
		20.1.1.3 Offene Systeme	566
	20.1.2	Phasen	566
	20.1.2	Gleichgewicht	567
20.2		lsgrößen	569
20.2	20.2.1	Begriffsbestimmung	569
	20.2.1	20.2.1.1 Extensive Zustandsgrößen	569
		e e e e e e e e e e e e e e e e e e e	569
		20.2.1.2 Intensive Zustandsgrößen 20.2.1.3 Spezifische und molare Größen	570
	20.2.2	•	570
	20.2.2	Temperatur	
		20.2.2.1 Temperature inheiten	571
	20.2.3	20.2.2.2 Temperaturmessung	572
	20.2.3		574
		20.2.3.1 Druckeinheiten	575
	20.2.4	20.2.3.2 Druckmessung	576
	20.2.4	Stoffmenge, Teilchenzahl und Avogadro-Zahl	578
20.2	20.2.5	Entropie	580
20.3		dynamische Potenziale	582
	20.3.1	Prinzip der maximalen Entropie – Prinzip der minimalen Energie	582
	20.3.2	Innere Energie als Potenzial	582
	20.2.2	20.3.2.1 Innere Energie des idealen Gases	582
	20.3.3	Entropie als thermodynamisches Potenzial	583
	20.2.4	20.3.3.1 Entropie des idealen Gases	583
	20.3.4	Freie Energie	584
	20.3.5	Enthalpie	584
		20.3.5.1 Enthalpie des idealen Gases	586
		20.3.5.2 Enthalpie und Phasenübergänge	586
	•0	20.3.5.3 Reaktionsenthalpie und Satz von Hess	586
	20.3.6	Freie Enthalpie	587
		20.3.6.1 Chemische Reaktionen	587
		20.3.6.2 Prinzip von Le Chatelier	588

		Inhaltsverzeichnis	XIII
	20.3.7	Maxwell-Relationen	588
20.4		Gas	589
20.4	20.4.1		589
	20.4.1	Boyle-Mariottesches Gesetz	590
	20.4.2	Gesetz von Gay-Lussac	590 591
20.5		Zustandsgleichung	591
20.5	20.5.1	che Theorie des idealen Gases	
	20.3.1	Druck und Temperatur	591
	20.5.2	20.5.1.1 Mittlere quadratische Geschwindigkeit	592
	20.5.2	Maxwell-Boltzmann-Verteilung	593
	20.5.3	Freiheitsgrade	595
	20.5.4	Gleichverteilungssatz	595
20.6	20.5.5	Transportvorgänge	596
20.6		dsgleichungen	598
	20.6.1	Zustandsgleichung des idealen Gases	598
		20.6.1.1 Gaskonstanten	599
		20.6.1.2 Gasgemische	600
		20.6.1.3 Berechnung von Größen aus dem Gasgesetz	601
		20.6.1.4 Barometrische Höhenformel	602
	20.6.2	Zustandsgleichung realer Gase	602
		20.6.2.1 Virialentwicklung des realen Gases	602
		20.6.2.2 Van-der-Waals-Gleichung	603
		20.6.2.3 Phasenkoexistenzgebiet	605
		20.6.2.4 Kritischer Punkt	605
		20.6.2.5 Satz der übereinstimmenden Zustände	606
		20.6.2.6 Van-der-Waals-Gleichung als Virialentwicklung	606
	20.6.3	Zustandsgleichungen für Flüssigkeiten und Festkörper	607
		20.6.3.1 Anomalie des Wassers	609
21	Wärme	e, Energieumwandlung und Zustandsänderungen	611
21.1	Energie	eformen	611
	21.1.1	Energieeinheiten	611
		21.1.1.1 Einheiten außerhalb der SI-Norm	611
	21.1.2	Arbeit	612
	21.1.3	Chemisches Potenzial	613
	21.1.4	Wärme	613
		21.1.4.1 Spezifische Wärme	614
21.2	Energie	eumwandlung	614
	21.2.1	Umwandlung von äquivalenten Energien in Wärme	615
		21.2.1.1 Elektrische Energie	615
		21.2.1.2 Mechanische Energie	616
		21.2.1.3 Verbrennungsenergie	616
		21.2.1.4 Sonnenergie	617
	21.2.2	Umwandlung von Wärme in andere Energieformen	618
	21.2.3	Exergie und Anergie	618
21.3		kapazität	619
21.5	21.3.1		619
	41.3.1	Totale Wärmekapazität	620
		21.3.1.1 Wärmekapazität von Gemischen von Stoffen	620
	21 2 2	21.3.1.2 Wasserwert	
	21.3.2	Molare Wärmekapazität	620
	21.3.3	Spezifische Wärmekapazität	622
		21.3.3.1 Weitere Eigenschaften der spezifischen Wärmekapazität	622

		21.3.3.2 Spezifische Wärmekapazität von Gemischen von Stoffen	623
		21.3.3.3 Spezifische Wärmekapazität von Gasen	623
		21.3.3.4 Spezifische Wärmekapazität im idealen Gas	624
		21.3.3.5 Adiabatenkoeffizient	625
		21.3.3.6 Spezifische Wärmekapazität von Flüssigkeiten und Festkörpern	625
21.4		dsänderungen	626
	21.4.1	Reversible und irreversible Prozesse	626
	21.4.2	Isothermer Prozess	627
	21.4.3	Isobarer Prozess	628
	21.4.4	Isochorer Prozess	628
	21.4.5	Adiabatischer (isentroper) Prozess	629
24.5	21.4.6	Polytroper Prozess	630
21.5		odynamische Hauptsätze	631
	21.5.1	Nullter Hauptsatz	631
	21.5.2	Erster Hauptsatz	632
		21.5.2.1 Äquivalente Formulierungen des ersten Hauptsatzes	633
		21.5.2.2 Mikroskopische Aspekte des ersten Hauptsatzes	633
	21.5.3	Zweiter Hauptsatz	634
	21.5.4	Dritter Hauptsatz	635
21.6		scher Kreisprozess	635
	21.6.1	Prinzip und Anwendung	635
		21.6.1.1 Teilschritte des Carnot-Prozesses	636
		21.6.1.2 Energiebilanz und Wirkungsgrad des Carnot-Prozesses	638
	21.6.2	Reduzierte Wärme	638
21.7		odynamische Maschinen	639
	21.7.1	Rechts- und linkslaufende Prozesse	639
	21.7.2	Wärmepumpe und Kältemaschine	639
	21.7.3	Stirling-Prozess	640
	21.7.4	Dampfmaschine	642
	21.7.5	Offene Systeme	643
	21.7.6	Otto- und Diesel-Motor	644
		21.7.6.1 Otto-Prozess	644
		21.7.6.2 Diesel-Prozess	645
	21.7.7	Gasturbinen	646
21.8		flüssigung	647
	21.8.1	Herstellung tiefer Temperaturen	647
		21.8.1.1 Kältemischungen	647
		21.8.1.2 Lösungswärme	647
		21.8.1.3 Wärmepumpe	647
	21.8.2	Joule-Thomson-Effekt	647
		21.8.2.1 Linde-Verfahren	649
		21.8.2.2 Claude-Verfahren	649
22	Phasen	umwandlungen, Reaktionen und Wärmeausgleich	650
22.1	Phase u	and Aggregatzustand	650
	22.1.1	Phase	650
	22.1.2	Aggregatzustände	650
	22.1.3	Aggregatumwandlungen	651
	22.1.4	Dampf	652
22.2	Ordnun	g von Phasenübergängen	653
	22.2.1	Phasenübergang erster Ordnung	653

		Inhaltsverzeichnis	XV
	22.2.2	Phasenübergang zweiter Ordnung	654
	22.2.3	Lambda-Übergänge	654
	22.2.4	Phasenkoexistenzgebiet	655
	22.2.5	Kritische Indizes	656
22.3	Phasenü	ibergang und Van-der-Waals-Gas	656
	22.3.1	Phasengleichgewicht	656
	22.3.2	Maxwell-Konstruktion	657
	22.3.3	Siedeverzug und Kondensationsverzug	659
	22.3.4	Gesetz der übereinstimmenden Zustände	660
22.4	Beispiel	le für Phasenübergänge	660
	22.4.1	Magnetische Phasenumwandlungen	660
	22.4.2	Ordnungs-Unordnungs-Phasenübergänge	661
	22.4.3	Umwandlungen der Kristallstruktur	661
	22.4.4	Flüssige Kristalle	662
	22.4.5	Supraleitung	663
	22.4.6	Suprafluidität	663
22.5	Mehrko	mponentige Gase	664
	22.5.1	Partialdruck und Daltonsches Gesetz	664
	22.5.2	Euler-Gleichung und Gibbs-Duhem-Relation	665
22.6		asensysteme	666
22.0	22.6.1	Phasengleichgewicht	666
	22.6.2	Gibbssche Phasenregel	666
	22.6.3	Clausius-Clapeyron-Gleichung	667
22.7		Iruck von Lösungen	668
22.7	22.7.1	Raoultsches Gesetz	668
	22.7.2	Siedepunktserhöhung und Gefrierpunktserniedrigung	668
	22.7.3	Henry-Dalton-Gesetz	669
	22.7.4	Dampf-Luft-Gemische (feuchte Luft)	670
22.8		che Reaktionen	674
22.0	22.8.1	Stöchiometrie	674
	22.8.2	Phasenregel bei chemischen Reaktionen	675
	22.8.3		676
	22.8.4	Massenwirkungsgesetz	677
22.9		aturausgleich	678
22.9	22.9.1	Mischungstemperatur zweier Systeme	678
	22.9.1		679
22.10		Reversible und irreversible Prozessführung	680
22.10		übertragung	
		Wärmestrom	680
		Wärmeübergang	681
		Wärmeleitung	683
		Wärmewiderstand	686
		Wärmedurchgang	688
		Wärmestrahlung	692
00.11		Strahlungsaufnahme	692
22.11		- und Massentransport	694
		Fouriersches Gesetz	694
		Kontinuitätsgleichung	694
		Wärmeleitungsgleichung	695
		Ficksches Gesetz und Diffusionsgleichung	696
	22.11.5	Lösung von Wärmeleitungs- und Diffusionsgleichung	697

Form	elzeicher	Wärmelehre	698
23	Tabelle	n zur Thermodynamik	701
23.1		eristische Temperaturen	701
	23.1.1	Einheiten und Eichpunkte	701
	23.1.2	Schmelz- und Siedepunkte	702
	23.1.3	Curie- und Néel-Temperaturen	710
23.2	Kenngrö	ößen realer Gase	711
23.3	Thermis	sche Eigenschaften der Stoffe	712
	23.3.1	Viskosität	712
	23.3.2	Ausdehnung, Wärmekapazität und thermische Leitfähigkeit	712
23.4	Wärmei	ibertragung	718
23.5	Praktisc	he Korrekturdaten	720
	23.5.1	Druckmessung	720
		23.5.1.1 Umrechnung auf Meeresniveau	721
		23.5.1.2 Quecksilberbarometer-Messungen (Temperaturkorrektur)	723
	23.5.2	Volumenmessungen – Umrechnung auf Standardtemperatur	724
		23.5.2.1 Glas-Volumenometermessungen	724
23.6	_	ing flüssiger Tieftemperaturbäder	725
23.7		mittel	725
23.8	-	ruck	726
	23.8.1	Lösungen	726
	23.8.2	Relative Feuchte	726
	23.8.3	Dampfdruck von Wasser	727
23.9	Spezifis	che Enthalpien	729
V	Quant	enphysik	
V 24		• •	733
	Photon	en – Elektromagnetische Strahlung und Lichtquanten	733 733
24	Photon Plancks	• •	
24 24.1	Photono Plancks Photoeld	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz	733
24.1 24.2 24.3	Photono Plancks Photoelo Compto	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz	733 736 737
24.1 24.2 24.3 25	Photono Plancks Photoeld Compto Materie	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz	733 736 737 739
24.1 24.2 24.3	Photono Plancks Photoeld Compto Materie Wellenn	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt wellen – Wellenmechanik der Teilchen atur der Teilchen	733 736 737 739 739
24.1 24.2 24.3 25	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik	733 736 737 739 739 739
24 24.1 24.2 24.3 25 25.1	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen eatur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus	733 736 737 739 739 739 740
24 24.1 24.2 24.3 25 25.1	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus eergsche Unschärferelation	733 736 737 739 739 740 740
24 24.1 24.2 24.3 25 25.1 25.2 25.3	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable	733 736 737 739 739 740 740 741
24 24.1 24.2 24.3 25 25.1	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung	733 736 737 739 739 740 740
24 24.1 24.2 24.3 25 25.1 25.2 25.3	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale	733 736 737 739 739 740 740 741 748
24 24.1 24.2 24.3 25 25.1 25.2 25.3	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödit 25.4.1	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale Harmonischer Oszillator	733 736 737 739 739 740 740 741 748 749
24 24.1 24.2 24.3 25 25.1 25.2 25.3	Photono Plancks Photoele Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale	733 736 737 739 739 740 740 741 748 749 753
24 24.1 24.2 24.3 25 25.1 25.2 25.3 25.4	Photono Plancks Photoele Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale Harmonischer Oszillator Pauli-Prinzip	733 736 737 739 739 740 740 741 748 749 753 756
24 24.1 24.2 24.3 25 25.1 25.2 25.3 25.4	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3 Spin und	ches Strahlungsgesetz . ches Strahlungsgesetz . chetrischer Effekt . n-Effekt . cwellen – Wellenmechanik der Teilchen . atur der Teilchen . Grundannahmen der Quantenmechanik . Welle-Teilchen-Dualismus . ergsche Unschärferelation . unktion und Observable . ngergleichung . Stückweise konstante Potenziale . Harmonischer Oszillator . Pauli-Prinzip . d magnetische Momente .	733 736 737 739 739 740 740 741 748 749 753 756
24 24.1 24.2 24.3 25 25.1 25.2 25.3 25.4	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3 Spin und 25.5.1 25.5.2	ches Strahlungsgesetz cektrischer Effekt n-Effekt swellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale Harmonischer Oszillator Pauli-Prinzip d magnetische Momente Spin Magnetische Momente	733 736 737 739 739 740 740 741 748 749 753 756 756
24 24.1 24.2 24.3 25 25.1 25.2 25.3 25.4	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3 Spin und 25.5.1 25.5.2 Atom- u	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale Harmonischer Oszillator Pauli-Prinzip d magnetische Momente Spin Magnetische Momente und Molekülphysik	733 736 737 739 739 740 741 748 749 753 756 756 756 756
24 24.1 24.2 24.3 25 25.1 25.2 25.3 25.4	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3 Spin und 25.5.1 25.5.2 Atom- u	ches Strahlungsgesetz cektrischer Effekt n-Effekt swellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale Harmonischer Oszillator Pauli-Prinzip d magnetische Momente Spin Magnetische Momente	733 736 737 739 739 740 740 741 748 749 753 756 756 756 756 759
24 24.1 24.2 24.3 25 25.1 25.2 25.3 25.4 26 26.1	Photono Plancks Photoeld Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3 Spin und 25.5.1 25.5.2 Atom- u	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus ergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale Harmonischer Oszillator Pauli-Prinzip d magnetische Momente Spin Magnetische Momente und Molekülphysik egriffe der Spektroskopie	733 736 737 739 739 740 740 741 748 749 753 756 756 756 756 756 756
24 24.1 24.2 24.3 25 25.1 25.2 25.3 25.4 26 26.1	Photono Plancks Photoele Compto Materie Wellenn 25.1.1 25.1.2 Heisenb Wellenf Schrödi 25.4.1 25.4.2 25.4.3 Spin und 25.5.1 25.5.2 Atom- und Wassers 26.2.1	en – Elektromagnetische Strahlung und Lichtquanten ches Strahlungsgesetz ektrischer Effekt n-Effekt ewellen – Wellenmechanik der Teilchen atur der Teilchen Grundannahmen der Quantenmechanik Welle-Teilchen-Dualismus eergsche Unschärferelation unktion und Observable ngergleichung Stückweise konstante Potenziale Harmonischer Oszillator Pauli-Prinzip d magnetische Momente Spin Magnetische Momente und Molekülphysik egriffe der Spektroskopie toffatom	733 736 737 739 739 740 740 741 748 749 753 756 756 756 756 756 756 762 763 765

		Inhaltsverzeichnis	XVII
26.5	Röntge	nstrahlen	778
20.5	26.5.1	Anwendung von Röntgenstrahlen	780
26.6		ilspektren	781
26.7		in äußeren Feldern	784
26.8		ensystem der Elemente	786
26.9		elwirkung von Photonen mit Atomen und Molekülen	788
	26.9.1	Spontane und induzierte Emission	788
27	Elemer	ntarteilchenphysik – das Standard-Modell	791
27.1		neitlichung der Wechselwirkungen	791
27.1	27.1.1	Standard-Modell	791
	27.1.1	27.1.1.1 Gravitations-Wechselwirkung	792
		27.1.1.2 Elektromagnetische Wechselwirkung	792
		27.1.1.3 Schwache Wechselwirkung	793
		27.1.1.4 Starke Wechselwirkung	794
	27.1.2	Feldquanten oder Eichbosonen	794
	27.1.3	Fermionen und Bosonen	796
27.2	Leptone	en, Quarks und Vektorbosonen	798
	27.2.1	Leptonen	798
	27.2.2	Quarks	799
	27.2.3	Hadronen	801
	27.2.4	Beschleuniger und Detektoren	805
27.3	Symme	etrien und Erhaltungssätze	806
	27.3.1	Paritätserhaltung und schwache Wechselwirkung	807
	27.3.2	Ladungserhaltung und Paarbildung	808
	27.3.3	Ladungskonjugation und Antiteilchen	809
	27.3.4	Zeitumkehr-Invarianz und Umkehrreaktionen	809
	27.3.5	Erhaltungssätze	810
	27.3.6	Jenseits des Standard-Modells	811
28	Kernpl	hysik	813
28.1	Baustei	ne des Atomkerns	813
28.2	Grundg	größen des Atomkerns	815
28.3	Nukleo	n-Nukleon-Wechselwirkung	818
	28.3.1	Phänomenologische Nukleon-Nukleon-Potenziale	818
	28.3.2	Mesonenaustauschpotenziale	819
28.4	Kernmo	odelle	820
	28.4.1	Fermigas-Modell	820
	28.4.2	Kernmaterie	820
	28.4.3	Tröpfchen-Modell	821
	28.4.4	Schalenmodell	822
	28.4.5	Kollektivmodell	825
28.5		aktionen	827
	28.5.1	Reaktionskanäle und Wirkungsquerschnitte	827
	28.5.2	Erhaltungssätze in Kernreaktionen	830
		28.5.2.1 Energie- und Impulserhaltung	830
	20.7.5	28.5.2.2 Drehimpulserhaltung	831
	28.5.3	Elastische Streuung	832
	28.5.4	Compoundkernreaktion	833
	28.5.5	Optisches Modell	835
	28.5.6	Direkte Reaktion	836

	28.5.7	Schwerionenreaktionen	837
	28.5.8	Kernspaltung	840
28.6		fall	842
	28.6.1	Zerfallsgesetz	842
	28.6.2	α -Zerfall	846
	28.6.3	β -Zerfall	847
	28.6.4	γ -Zerfall	849
	28.6.5	Emission von Nukleonen und Nukleonenclustern	850
28.7		ktor	851
	28.7.1	Reaktortypen	852
28.8		ion	854
28.9		lwirkung von Strahlung mit Materie	857
	28.9.1	Ionisierende Teilchen	857
	28.9.2	γ -Strahlung	860
28.10		trie	862
		Dosismessverfahren	865
	28.10.2	Umweltradioaktivität	866
29	Festkör	perphysik	869
29.1	Struktur	fester Körper	869
	29.1.1	Einige Grundbegriffe der Festkörperphysik	869
	29.1.2	Struktur der Kristalle	870
	29.1.3	Bravais-Gitter	872
		29.1.3.1 Einfache Kristallstrukturen	875
	29.1.4	Methoden der Strukturuntersuchung	876
	29.1.5	Bindungsverhältnisse in Kristallen	878
29.2	Gitterfel	hlerhler	881
	29.2.1	Punktfehler	881
	29.2.2	Eindimensionale Defekte	882
	29.2.3	Zweidimensionale Gitterfehler	884
	29.2.4	Amorphe Festkörper	885
29.3	Mechan	ische Eigenschaften von Werkstoffen	886
	29.3.1	Makromolekulare Festkörper	887
		29.3.1.1 Polymere	887
		29.3.1.2 Thermoplaste	889
		29.3.1.3 Elastomere	889
		29.3.1.4 Duromere	889
	29.3.2	Verbundwerkstoffe	889
	29.3.3	Legierungen	890
	29.3.4	Flüssigkristalle	892
29.4	Phonone	en und Gitterschwingungen	894
	29.4.1	Elastische Wellen	894
	29.4.2	Phononen und spezifische Wärmekapazität	897
	29.4.3	Einstein-Modell	898
	29.4.4	Debye-Modell	899
	29.4.5	Wärmeleitung	901
29.5		nen im Festkörper	903
	29.5.1	Freies Elektronengas	903
	29.5.2	Bändermodell	908
29.6		er	912
-	29.6.1	Störstellenleitung	915
	•	•	

	29.6.2		rdiode	91′	
	29.6.3		The state of the second	92:	
			Bipolare Transistoren	92	
		29.6.3.2	Grundschaltungen	92	
	20.6.4		Darlington-Transistor	93	
	29.6.4	-	e (Feldeffekt-)Transistoren	93	
			Sperrschicht-FET (Junction-FET)	93	
	20.6.5		Insulated Gate FET (IGFET, MOSFET)	93	
	29.6.5	•	Trice	93	
		29.6.5.1	Triac	93 93	
		29.6.5.2	Abschaltthyristor (GTO)	93	
	20.6.6		Insulated-Gate-Bipolar-Thyristor (IGBT)		
	29.6.6		te Schaltkreise (IC)	93 93	
		29.6.6.1	Herstellung von ICs	93	
	29.6.7		Erzeugung von Schaltungsstrukturen	93	
	29.0.7	29.6.7.1	nsverstärker	93	
		29.6.7.1	Gegengekoppelter Operationsverstärker	94	
		29.6.7.2	Summationsverstärker	94 94	
		29.6.7.4		94	
		29.6.7.4	Integrator	94	
		29.6.7.6		94	
		29.6.7.7	Spannungsfolger Mitgekoppelter Operationsverstärker	94	
		29.6.7.8	Schmitt-Trigger	94	
29.7	Supralei		Schille-Higger	94	
29.1	29.7.1	_	gende Eigenschaften der Supraleitung	94	
	29.7.1	_	peratur-Supraleiterperatur-Supraleiter	95	
29.8			nschaften	95	
27.0	29.8.1	_	gnetismus	95	
	29.8.2	•	omagnetismus und Ferrimagnetismus	95	
29.9			enschaften	95	
27.7	29.9.1	_	rika	96	
	29.9.2		ktrika	96	
29 10			naften von Kristallen	96	
27.10	-	_	n und ihre Eigenschaften	96	
			fähigkeit	96	
			zenz	96	
			tronische Eigenschaften	96	
E		-	-		
		Quanten		96	
30		_	antenphysik	97	
30.1		-	iale	97	
30.2			radien der Elemente	97	
30.3	Elektronenemission				
30.4	_	_		98	
30.5	Kernreaktionen				
30.6	Wechselwirkung der Strahlung mit Materie				
30.7	Halleffekt 9				
30.8				98	
30.9	Halbleit	er – therm	nische, magnetische und elektrische Eigenschaften	98	

VI	Anhang	
31	Messungen und Messfehler	991
31.1	Physikalische Größen und SI-Einheiten	991
	31.1.1 Größen und Größensysteme	991
	31.1.2 Einheiten und das Einheitensystem SI	992
31.2	Fehlerrechnung und Statistik	995
	31.2.1 Messungen und Meßfehler	995
	31.2.1.1 Messfehler	995
	31.2.1.2 Fehlerfortpflanzung	996
	31.2.2 Mittelwerte von Messreihen	997
	31.2.3 Streuung	998
	31.2.4 Korrelation	999
	31.2.5 Ausgleichsrechnung, Regression	999
	31.2.6 Häufigkeitsverteilungen	1000
	31.2.6.1 Spezielle diskrete Verteilungen	1002
	31.2.6.2 Spezielle stetige Verteilungen	1003
	31.2.7 Zuverlässigkeit	1005
32	Vektorrechnung	1007
32.1		1007
32.2	Multiplikation mit einem Skalar	1008
32.3	Addition und Subtraktion von Vektoren	
32.4		1009
33	Differenzial- und Integralrechnung	1012
33.1	Differenzialrechnung	1012
	33.1.1 Differenziationsregeln	1012
33.2	Integralrechnung	1013
	33.2.1 Integrationsregeln	1014
33.3	Ableitungen und Integrale elementarer Funktionen	1015
34	Tabellen zum SI	1016
34.1	Definierende Konstanten und Basiseinheiten	1016
34.2	SI-Einheiten	1017
34.3	SI-fremde Einheiten	1019
34.4	Dezimalvorsätze	1021
34.5	Umrechnungstabellen	1021
Sachv	wortverzeichnis	1033

Tabellenverzeichnis

8.1/1	Einfache Metalle	214
8.1/2	Konstruktionswerkstoffe	215
8.1/3	Elektrische Funktionswerkstoffe	215
3.1/4	Magnetische Funktionswerkstoffe	216
3.1/5	Ferrite	216
8.1/6	Glas	216
3.1/7	Keramik	216
3.1/8	Kunststoffe	217
3.1/9	Halbleiter	218
3.1/10	Baustoffe	218
3.1/11	Schüttgüter	219
3.1/12	Flüssigkeiten unter Normalbedingungen	219
3.1/13	Dichte einiger Metalle im flüssigen Zustand	220
3.2/1	Elastische Eigenschaften	221
3.2/2	Kritische Spannungen	222
3.2/3	Drähte	222
3.2/4	Whisker	222
3.2/5	Stahl	223
3.2/6	Keramische Werkstoffe	223
3.2/7	Kunststoffe	224
3.2/8	Faser	224
3.276 3.3/1	Rollreibung	224
3.3/2	Gleitreibungszahl	225
3.3/2 3.3/3	Haftreibung	225
3.3/4		226
3.3/4 3.3/5	Helium	226
3.3/6	Stickstoff	227
	Wasserstoff	227
3.3/7	Methan	
3.3/8	Stickstoffmonoxid	228
3.3/9	Kohlendioxid	228
3.3/10	Temperaturabhängigkeit der Kompressibilität	228
3.3/11	Kompressibilität von Flüssigkeiten	229
3.3/12	Kompressibilität von Festkörpern	229
3.3/13	Viskosität von Flüssigkeiten	229
3.3/14	Viskosität kryogener Flüssigkeiten	229
3.3/15	Viskosität wässriger Lösungen	229
3.3/16	Viskosität von Wasser	230
3.3/17	Viskosität als Funktion der Temperatur	230
3.3/18	Viskosität von Gasen	230
3.3/19	Viskosität von Gasen	231
3.3/20	Temperaturkorrekturfaktor	231
3.3/21	Widerstandsbeiwerte	232
3.3/22	Oberflächenspannung von Flüssigkeiten und Lösungen	233
13.1/1	Korrekturfaktoren harmonische Schwingung	381
13.1/2	Schallgeschwindigkeit in Gasen	381
13.1/3	Schallgeschwindigkeit in Luft	381
13.1/4	Schalldämpfungskoeffizient in Gasen	381
13.1/5	Schallfeldgrößen in Luft	381

ellenverzeichnis
)

13.1/6	Schallgeschwindigkeiten in Erdölprodukten	382
13.1/7	Schallgeschwindigkeiten in Flüssigkeiten	382
13.1/8	Schalldämpfungskoeffizienten in Flüssigkeiten	382
13.1/9	Schallgeschwindigkeit in Metallen	383
13.1/10	Schallgeschwindigkeit in Kunststoffen und Gläsern	383
13.1/11	Schallgeschwindigkeit in Baustoffen	383
13.1/12	Dämmzahlen für Baustoffe	383
13.1/13	Schallschwächung in Luft	384
13.1/14	Lautstärken	384
13.1/15	Gesundheitsschädlicher Lärm	384
13.1/16	Schallabsorptionsgrade	385
13.2/1	Fasertypen der optischen Signalübertragung	385
13.2/2	Brechzahlen	386
13.2/3	Wichtige Lasertypen	386
13.2/4	Kohärenzlängen einiger Lichtquellen	387
13.2/5	Beleuchtungsstärken	387
13.2/6	Lichtströme	387
13.2/7	Hellempfindlichkeitsgrad	387
13.2/8	Ultraviolettes Spektralgebiet	388
13.2/9	Fraunhofer-Linien	388
19.1/1	Metalle	546
19.1/2	Druckabhängigkeit	546
19.1/3	Relative Änderung am Schmelzpunkt	547
19.1/4	Legierungen	547
19.1/5	Elektrochemische Spannungsreihe	548
19.1/6	Thermoelektrische Spannungsreihe	548
19.1/7	Thermospannung gebräuchlicher Thermoelemente	549
19.1/8	Gebräuchliche Thermopaare	549
19.1/9	Peltier-Koeffizient für verschiedene Metalle	550
19.2/1	Dielektrizitätszahl	550
19.2/2	Keramiken	552
19.2/3	Gläser	552
19.2/4	Elektrische Eigenschaften von Polymeren	552
19.2/5	Spezifischer Widerstand von Isolierstoffen	553
19.2/6	Elektrische Eigenschaften von Isolierstoffen	553
19.2/7	Elektrische Eigenschaften von Transformatoröl	555
19.2/8	Einige Eigenschaften von Elektreten	555
19.2/9	Ferroelektrika mit Sauerstoff-Oktaederstruktur	555
19.3/1	Widerstandslegierungen	556
19.3/2	Spannung Weston-Normalelemente	556
19.3/2	Kontaktwerkstoffe	556
19.3/4	Spannungsbereiche in der Elektrotechnik	556
19.3/4	Richtwerte einiger Spannungen	557
19.3/6	Gasdurchlässigkeit einiger Quarzgläser	557
19.3/7	Wirkung des elektrischen Stromes	557
19.3//	Molare magnetische Suszeptibilität	558
19.4/1 19.4/2	Molare magnetische Suszeptibilität anorganischer Verbindungen	558
19.4/2		560
	Technisch relevante magnetische Legierungen	
19.5/1	Ferromagnetische Elemente	560

XXIV Tabellenverzeichnis

23.8/3	Psychrometrie	726
23.8/4	Dampfdruck von Wasser bei niedrigen Temperaturen	727
23.8/5	Dampfdruck und spez. Enthalpie von Wasser	727
23.8/6	Spezifisches Volumen und spezifische Enthalpie von Wasserdampf	728
23.9/1	Spezifischer Heizwert	729
23.9/2	Spezifische Schmelz- und Verdampfungsenthalpien reiner Metalle	729
23.9/3	Relative Volumenänderung beim Schmelzen	730
23.9/4	Temperaturabhängigkeit der Verdampfungswärme	730
23.9/5	Spezifische Schmelz- und Verdampfungsenthalpien anderer Stoffe	731
30.1/1	Ionisationsenergien der Elemente	972
30.1/2	Ionisationsenergie von Stickstoffverbindungen	974
30.1/3	Ionisationsenergien von Kohlenwasserstoffverbindungen	974
30.1/4	Ionisationsenergien von Halogenverbindungen	975
30.1/5	Ionisationsenergien von Sauerstoffverbindungen	975
30.1/6	Dissoziationsenergie zweiatomiger Moleküle	976
30.2/1	Atom- und Ionenradien der Elemente	977
30.3/1	Austrittsarbeit der Elektronen aus den reinen Elementen	979
30.3/2	Austrittsarbeit für adsorbierte Oberflächen	981
30.3/3	Thermoemissionseigenschaften einer Wolframkathode	981
30.3/4	Photokathoden aus Alkaliantimoniden	982
30.3/5	Grundlegende Eigenschaften der Sekundär-Elektronen-Emission	982
30.4/1	Hauptlinien des charakteristischen Röntgenspektrums einiger Elemente	983
30.5/1	Wirkungsquerschnitt für die Streuung von Neutronen an verschiedenen Elementen	983
30.5/2	Kernfusionsreaktionen	984
30.6/1	Massenschwächungskoeffizient für Röntgenstrahlung	984
30.6/2	Massenschwächungskoeffizient für Elektronen in Aluminium	984
30.6/3	Reichweite von α -Teilchen in Luft, biologischem Gewebe und Aluminium	984
30.7/1	Hall-Koeffizient für Metalle	985
30.8/1	Supraleitende Elemente	986
30.8/2	Supraleitende Verbindungen und Legierungen	987
30.9/1	Elementhalbleiter	988
30.9/2	Verbindungshalbleiter	988
30.9/3	Dotierungen von Si	988
30.9/4	Dotierungen in Ge	989
30.9/5	Wirkung ionisierender Strahlung auf Halbleiter	989
34.1/1	Definierende Konstanten des SI	1016
34.1/2		1016
34.2/1	· · · · · · · · · · · · · · · · · · ·	1017
34.3/1	SI-fremde gesetzliche Einheiten	1019
34.3/2		1019
34.3/3	e	1020
34.3/4		1020
34.4/1		1021
34.5/1		1021

Teil I Mechanik

1 Kinematik

Kinematik, die Lehre von den Bewegungen der Körper. Die Kinematik beschäftigt sich mit der mathematischen Beschreibung von Bewegungen, ohne die wirkenden Kräfte zu betrachten. Dabei spielen die Größen Ort, Weg, Zeit, Geschwindigkeit und Beschleunigung die zentrale Rolle.

1.1 Beschreibung von Bewegungen

Bewegung, die Änderung des Ortes eines Körpers während eines Zeitraums. Zu ihrer Beschreibung werden dem Ort des Körpers in einem Koordinatensystem Zahlenwerte (Koordinaten) zugeordnet, deren Änderung in der Zeit die Bewegung charakterisiert.

Gleichförmige Bewegung, besteht, wenn der Körper in gleichen Zeiten gleiche Strecken zurücklegt. Gegensatz: ungleichförmige Bewegung.

1.1.1 Bezugssysteme

1. Dimension von Räumen

Dimension eines **Raumes**, die Anzahl der Zahlenwerte, die nötig sind, um den Ort eines Körpers in diesem Raum zu bestimmen.

- Eine Gerade ist eindimensional, da **ein** Zahlenwert zur Ortsbestimmung nötig ist; eine Fläche ist zweidimensional mit **zwei** Zahlenwerten, und der Raum ist dreidimensional, da **drei** Zahlenwerte zur Ortsbestimmung nötig sind.
- Jeder Punkt auf der Erde kann durch die Angabe seiner geographischen Länge und Breite bestimmt werden. Die Dimension der Erdoberfläche ist 2.
- Der Raum, in dem wir uns bewegen, ist dreidimensional. Eine Bewegung in der Ebene ist zweidimensional, eine Bewegung auf einer Schiene ist eindimensional. Als weitere Generalisierung findet man den nulldimensionalen Punkt und das vierdimensionale Raum-Zeit-Kontinuum (Minkowski-Raum), dessen Koordinaten drei Raumkoordinaten und eine Zeitkoordinate sind.
- Bei Zwangsbedingungen (z. B. geführte Bewegung längs Schiene oder auf Fläche) wird die Raumdimension eingeschränkt.

2. Koordinatensysteme

Koordinatensysteme dienen zur mathematischen Beschreibung von Bewegungen. Sie ordnen den Orten, an denen sich ein Körper befindet, Zahlenwerte zu. Dadurch kann eine Bewegung als mathematische Funktion beschrieben werden, die dem Körper zu jeder gegebenen Zeit die Ortskoordinaten zuordnet.

Es gibt verschiedene Arten von Koordinatensystemen ($\vec{\mathbf{e}}_i$: Einheitsvektor in *i*-Richtung):

- a) Affines Koordinatensystem, im zweidimensionalen Fall sind zwei durch einen Punkt O gehende Geraden (eingeschlossener Winkel beliebig) die Koordinatenachsen (Abb. 1.1), im dreidimensionalen Fall sind die Koordinatenachsen drei verschiedene Geraden, die nicht in einer Ebene liegen und durch den Koordinatenursprung O gehen. Die Koordinaten ξ, η, ζ eines Raumpunktes ergeben sich als Projektionen parallel zu den drei Koordinatenebenen, die von je zwei Koordinatenachsen aufgespannt werden, auf die Koordinatenachsen.
- **b)** Kartesisches Koordinatensystem, Spezialfall des affinen Koordinatensystems, besteht aus jeweils senkrecht aufeinander stehenden geradlinigen Koordinatenachsen. Die Koordinaten x,y,z eines Raumpunktes P sind die senkrechten Projektionen des Ortes von P auf diese Achsen (Abb. 1.2).

Linienelement: $d\vec{\mathbf{r}} = dx \, \vec{\mathbf{e}}_x + dy \, \vec{\mathbf{e}}_y + dz \, \vec{\mathbf{e}}_z.$

Flächenelement in der x,y-Ebene: dA = dx dy. Volumenelement: dV = dx dy dz.

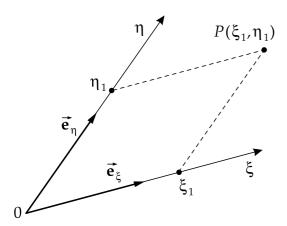


Abbildung 1.1: Affine Koordinaten in der Ebene. Koordinaten des Punktes $P: \xi_1, \eta_1$

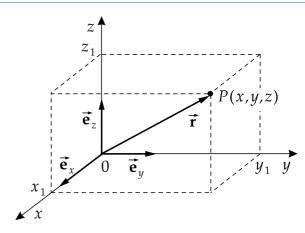


Abbildung 1.2: Kartesische Koordinaten im dreidimensionalen Raum. Koordinaten des Punktes P: x,y,z

Rechtssystem, im dreidimensionalen Raum spezielle Anordnung der Koordinatenachsen eines kartesischen Koordinatensystems: Die x-, y- und z-Achsen zeigen in dieser Reihenfolge wie Daumen, Zeigefinger und Mittelfinger der rechten Hand (**Abb. 1.3**).

c) Polarkoordinatensystem in der Ebene, Polarkoordinaten sind der Abstand r vom Ursprung und der Winkel φ , den der Ortsvektor mit einer Bezugsrichtung (positive x-Achse) bildet (**Abb. 1.4**).

Linienelement: $d\vec{\mathbf{r}} = dr \, \vec{\mathbf{e}}_r + r \, d\varphi \, \vec{\mathbf{e}}_{\omega}$.

Flächenelement: $dA = r dr d\varphi$.

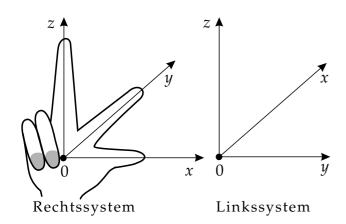


Abbildung 1.3: Rechts- und Linkssystem

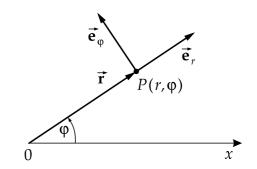


Abbildung 1.4: Polarkoordinaten in der Ebene. Koordinaten des Punktes $P: r, \varphi$

d) Kugelkoordinatensystem, Verallgemeinerung der Polarkoordinaten auf den dreidimensionalen Raum. Kugelkoordinaten sind der Abstand r vom Ursprung, der Winkel ϑ des Ortsvektors gegen die z-Achse und der Winkel φ , den die Projektion des Ortsvektors auf die x-y-Ebene mit der positiven x-Achse bildet (**Abb. 1.5**).

Linienelement: $d\vec{\mathbf{r}} = dr \, \vec{\mathbf{e}}_r + r \, d\vartheta \, \vec{\mathbf{e}}_\vartheta + r \, \sin\vartheta \, d\varphi \, \vec{\mathbf{e}}_\varphi .$

Volumenelement: $dV = r^2 \sin \vartheta \, dr \, d\vartheta \, d\varphi.$

Raumwinkelelement: $d\Omega = \sin \vartheta \, d\vartheta \, d\varphi$. **e) Zylinderkoordinatensystem,** Mischung aus kartesisch

e) **Zylinderkoordinatensystem**, Mischung aus kartesischen und Polarkoordinaten im dreidimensionalen Raum. Zylinderkoordinaten sind die Projektion des Ortsvektors \vec{r} auf die z-Achse und die Polarkoordinaten (ρ, φ) in der zur z-Achse senkrechten Ebene, also die Länge ρ des Lotes auf die z-Achse und der Winkel, den dieses Lot mit der positiven x-Achse bildet (**Abb. 1.6**).

Linienelement: $d\vec{\mathbf{r}} = d\rho \ \vec{\mathbf{e}}_{\rho} + \rho \ d\phi \ \vec{\mathbf{e}}_{\phi} + dz \ \vec{\mathbf{e}}_{z}$.

Volumenelement: $dV = \rho d\rho d\phi dz$.

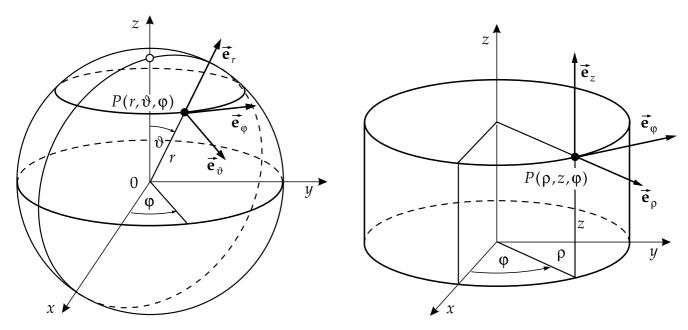


Abbildung 1.5: Kugelkoordinaten

Abbildung 1.6: Zylinderkoordinaten

3. Bezugssystem

Ein Bezugssystem besteht aus einem Satz von **Koordinaten**, relativ zu dem die Lage des mechanischen Systems angegeben wird, und einer **Uhr** zur Zeitanzeige. Die Verbindung zwischen dem Bezugssystem und physikalischen Vorgängen geschieht durch **Aufweisung**, d. h. durch die Angabe von Bezugspunkten und/oder Bezugsrichtungen.

- Beim kartesischen Koordinatensystem in zwei Dimensionen ist der Ursprung und die Richtung der *x*-Achse anzugeben, in drei Dimensionen auch die Richtung der *y*-Achse. Alternativ können zwei bzw. drei Bezugspunkte angegeben werden.
- Es gibt kein absolutes Bezugssystem. Jede Bewegung ist eine Relativbewegung, d.h., sie hängt von dem gewählten Bezugssystem ab. Die Definition einer **absoluten** Bewegung ohne Angabe des Bezugssystems ist physikalisch sinnlos. Die Angabe des Bezugssystems ist für die Beschreibung jeder Bewegung **unbedingt notwendig**.
- Ein und dieselbe Bewegung kann in unterschiedlichen Bezugssystemen beschrieben werden. Die geschickte Wahl des Bezugssystems ist oft Voraussetzung für eine einfache Behandlung der Bewegung.

4. Ortsvektor und Ortsfunktion

Ortsvektor, $\vec{\mathbf{r}}$, Vektor vom Koordinatenursprung zum Raumpunkt (x,y,z). Man schreibt den Ortsvektor als einen Spaltenvektor, dessen Komponenten die Koordinaten sind (s. S.1007):

$$\vec{\mathbf{r}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Ortsfunktion, $\vec{\mathbf{r}}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$, gibt den Ort eines Körpers zu jedem Zeitpunkt t an. Durch die Ortsfunktion

wird die Bewegung eindeutig und vollständig beschrieben.

5. Bahn.

die Menge aller Raumpunkte (Orte), die der Körper bei seiner Bewegung durchläuft.

Die Bahn einer Punktmasse, die auf einem sich drehenden Rad mit dem Radius R im Abstand a < R von der Drehachse befestigt ist, ist ein Kreis. Rollt das Rad auf einer geraden Schiene ab, dann bewegt sich der Punkt auf einer verkürzten Zykloide (**Abb. 1.7**).

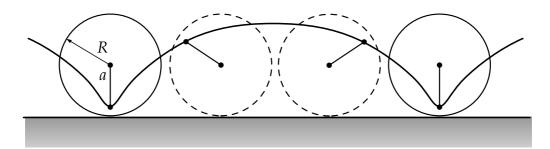


Abbildung 1.7: Verkürzte Zykloide als Überlagerung von Rotation und Translation

6. Bahnkurve,

Darstellung der Bahn als Funktion $\vec{\mathbf{r}}(p)$ eines Parameters p, der z. B. der Zeitpunkt t oder der zurückgelegte Weg s sein kann. Mit wachsenden Parameterwerten durchläuft der Massenpunkt die Bahn in positiver Kurvenrichtung (**Abb. 1.8**).

Aus der Bahn allein, ohne Kenntnis der zeitabhängigen Ortsfunktion, lässt sich die Geschwindigkeit des Massenpunktes nicht ableiten.

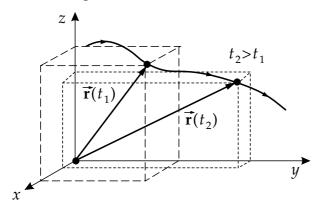


Abbildung 1.8: Bahnkurve $\vec{\mathbf{r}}(t)$

- a) Beispiel: Kreisbewegung eines Massenpunktes. Bewegung eines Massenpunktes auf einem Kreis mit dem Radius R in der x,y-Ebene des dreimensionalen Raumes. Parametrisierung der Bahnkurve durch den Drehwinkel φ in Abhängigkeit von der Zeit t
- in Kugelkoordinaten: r = R, $\vartheta = \pi/2$, $\varphi = \varphi(t)$,
- in kartesischen Koordinaten: $x(t) = R \cdot \cos \varphi(t)$, $y(t) = R \cdot \sin \varphi(t)$, z(t) = 0 (Abb. 1.9).

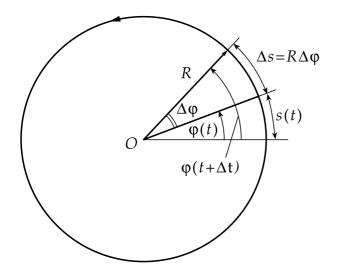


Abbildung 1.9: Bewegung auf einem Kreis mit dem Radius R. Element des Drehwinkels: $\Delta \varphi$, Element der Bogenlänge: $\Delta s = R \cdot \Delta \varphi$

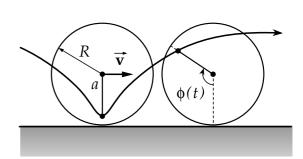


Abbildung 1.10: Parameterdarstellung der Bewegung auf einer verkürzten Zykloide durch den Wälzwinkel ϕ als Funktion der Zeit t

b) Beispiel: Punkt auf rollendem Rad. Die Bahnkurve eines Punktes, der sich auf einem mit konstanter Geschwindigkeit nach rechts rollenden Rad (Radius R) im Abstand a < R von der Achse befindet, ist eine verkürzte Zykloide. Parameterdarstellung der verkürzten Zykloide in kartesischen Koordinaten durch den Wälzwinkel $\phi(t)$ (**Abb. 1.10**) lautet:

$$x(t) = vt - a\sin\phi(t),$$

$$y(t) = R - a\cos\phi(t).$$

7. Freiheitsgrade

eines mechanischen Systems, Anzahl der unabhängigen Größen, die notwendig sind, um die Lage des Systems eindeutig zu bestimmen.

Ein Massenpunkt im dreidimensionalen Raum hat drei Freiheitsgrade der Translation (Verschiebungen in drei voneinander unabhängigen Richtungen x,y,z). Ein freies System aus N Massenpunkten im dreidimensionalen Raum hat $3 \cdot N$ Freiheitsgrade.

Wird bei einem System aus N Massenpunkten die Bewegung der Massenpunkte durch innere oder äußere Zwangsbedingungen eingeschränkt, so dass k Nebenbedingungen zwischen den Koordinaten $\vec{\mathbf{r}}_1, \vec{\mathbf{r}}_2, \cdots, \vec{\mathbf{r}}_N$ bestehen.

$$g_{\alpha}(\vec{\mathbf{r}}_1,\vec{\mathbf{r}}_2,\cdots,\vec{\mathbf{r}}_N,t)=0, \quad \alpha=1,2,\cdots,k,$$

dann hat das System nur noch $f = 3 \cdot N - k$ Freiheitsgrade.

Für einen Massenpunkt, der sich nur in der x,y-Ebene (Bedingung: z=0) bewegen kann, verbleiben zwei Freiheitsgrade. Der Massenpunkt hat nur einen Freiheitsgrad, wenn die Bewegung auf die x-Achse (Bedingungen: y=0, z=0) eingeschränkt ist.

Ein System aus zwei, durch eine Stange der Länge l fest verbundenen Massenpunkten besitzt f = 6 - 1 = 5 Freiheitsgrade (Bedingung: $(\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2)^2 = l^2$, $\vec{\mathbf{r}}_1$, $\vec{\mathbf{r}}_2$: Ortsvektoren der Massenpunkte).

Ein starrer Körper besitzt sechs Freiheitsgrade: drei Translationsfreiheitsgrade und drei Rotationsfreiheitsgrade. Wird ein starrer Körper an einem Punkt festgehalten (Kreisel), verbleiben drei Freiheitsgrade der Rotation. Ein starrer Körper, der sich nur um eine feste Achse drehen kann, ist ein physisches Pendel mit nur einem Rotationsfreiheitsgrad.

Eine nichtstarre, kontinuierliche Massenverteilung (Kontinuumsmodell eines deformierbaren Körpers) hat unendlich viele Freiheitsgrade.

1.1.2 **Z**eit

1. Definition und Messung der Zeit

Zeit, t, zur Quantifizierung zeitlich veränderlicher Vorgänge.

Periodische (wiederkehrende) Vorgänge in der Natur werden zur Festlegung der Zeiteinheit benutzt. **Zeitraum, Zeitintervall,** Δt , der zeitliche Abstand zweier Ereignisse.

Die Messung der Zeit mittels **Uhren** beruht auf periodischen (Pendel, Drehschwingungen) oder gleichmäßigen (vormals in Gebrauch: Abbrennen einer Kerze, Wasseruhr) Vorgängen in der Natur. **Schwerependel** bieten den Vorteil, dass ihre Periode T nur von ihrer Länge l (und der örtlichen Fallbeschleunigung g) abhängt: $T = 2\pi\sqrt{l/g}$. Mechanische Taschenuhren basieren auf der periodischen Drehbewegung der **Unruh**, die durch eine Spiralfeder erzwungen wird. Moderne Verfahren benutzen elektrische Schwingkreise, deren Frequenz durch die Resonanzfrequenz eines Quarzkristalls oder atomphysikalische Vorgänge stabilisiert wird.

Stoppuhr, dient zur Messung von Zeitintervallen, oft in Verbindung mit mechanischen oder elektrischen Signalgebern (Schalter, Lichtschranke).

Typische Genauigkeiten von Uhren liegen im Bereich von Minuten pro Tag für mechanische Uhren, bei einigen Zehntel Sekunden pro Tag für Quarzuhren und bei 10^{-14} (eine Sekunde in mehreren Millionen Jahren) für Atomuhren, die auch für Deutschland als primäres Zeitnormal (von der Physikalisch-Technischen Bundesanstalt in Braunschweig festgelegte Zeit) dienen.

2. Zeiteinheiten

Sekunde, s, SI-Einheit der Zeit. Eine der Basiseinheiten des SI, definiert als die Dauer von 9 192 631 770 Schwingungen der elektromagnetischen Strahlung, die der Energie des Übergangs zwischen den zwei Hyperfeinstrukturniveaus des ungestörten Grundzustands im Cäsium 133 Atom entspricht. Ursprünglich definiert als der 86400ste Teil eines mittleren Sonnentages, der in 24 Stunden zu je 60 Minuten zu je 60 Sekunden aufgeteilt ist. Die Tageslänge ist nicht hinreichend konstant, um als Bezugsnormal zu dienen.

```
[t] = s = Sekunde
```

Weitere Einheiten:

```
1 Minute (min) = 60 s
1 Stunde (h) = 60 min = 3600 s
```

1 Tag (d) = 24 h = 1440 min = 86400 s

1 Jahr (a) = 365.2425 d.

- Der Zeitstandard wird durch automatische Radioausstrahlungen (in Deutschland durch den Langwellensender DLF77 bei Frankfurt) allgemein zugänglich gemacht.
- Das Gregorianische **Jahr** hat 365.2425 Tage und weicht um 3/10000 Tage vom tropischen Jahr ab.

Die Zeit wird weiter in Wochen (zu 7 Tagen) und Monate (zu 28 bis 31 Tagen) (im Gregorianischen Kalender) unterteilt.

3. Kalender.

dient zur weiteren Unterteilung von größeren Zeiträumen. Die Kalendersysteme beziehen sich auf den Mondzyklus von ca. 28 Tagen und den Sonnenzyklus von ca. $365\frac{1}{4}$ Tagen. Da diese nicht ineinander aufgehen, müssen Schalttage eingefügt werden.

In Deutschland gilt der **Gregorianische Kalender**, der seit 1582 den früheren **Julianischen Kalender** ersetzte, wobei die Schaltregel für glatte Jahrhundertjahre verändert wurde. Seitdem fällt der Frühlingsanfang auf den 21. oder 20. März.

Der Julianische Kalender war in osteuropäischen Ländern teilweise bis nach der Oktoberrevolution 1917 in Rußland in Gebrauch. Er wich zuletzt um etwa drei Wochen vom Gregorianischen ab.

Schalttag, wird in allen durch 4 teilbaren Jahren am Ende des Februars eingefügt. Ausnahme: volle Jahrhunderte, die nicht durch 400 teilbar sind (2000 ist Schaltjahr, 1900 nicht).

Kalenderwoche, Unterteilung des Jahres in 52 oder 53 Wochen. Als erste Kalenderwoche eines Jahres zählt jene, die den ersten Donnerstag des Jahres enthält.

Der erste Wochentag der bürgerlichen Woche ist der Montag, nach christlicher Tradition allerdings der Sonntag.

Gregorianische Kalenderjahre werden durch eine **Jahreszahl** fortlaufend nummeriert. Jahre vor dem Jahr 1 werden durch "v.Chr." (vor Christus) oder "B.C." (before Christ) bezeichnet.

- Es gibt kein Jahr Null; auf das Jahr 1 v. Chr. folgt direkt das Jahr 1 n. Chr.
- Julianische Tageszählung: Zeitskala in der Astronomie.

Weitere Kalendersysteme: Andere gebräuchliche Kalendersysteme sind der hebräische Kalender (Lunisolarkalender, Mischung aus Sonnen- und Mondkalender) mit unterschiedlich langen Jahren und Schaltmonaten; Zählung der Jahre ab 7. Oktober 3761 v. Chr. "Erschaffung der Welt", Jahresanfang im September/Oktober, 1997 beginnt das Jahr 5758) und der mohammedanische Kalender (reiner Mondkalender mit Schaltmonat; Zählung der Jahre ab der Flucht Mohammeds aus Mekka am 16. Juli 622 n. Chr., das mohammedanische Jahr 1418 begann im Jahr 1997 des Gregorianischen Kalenders).

1.1.3 Länge, Fläche, Volumen

1. Länge,

l, der **Abstand** (kürzeste **Verbindungslinie**) zwischen zwei Punkten im Raum.

Meter, m, SI-Einheit der Länge. Eine der Basiseinheiten des SI, definiert als die Strecke, die Licht im Vakuum innerhalb des Bruchteils von 1/299 792 458 einer Sekunde zurücklegt. Ursprünglich definiert als der 40millionste Teil des Erdumfangs und durch ein im *Bureau International des Poids et Mesures* in Paris aufbewahrtes **Urnormal** aus Platin-Iridium repräsentiert.

$$[l] = m = Meter.$$

Weitere Einheiten siehe Tabelle 34.2/1.

2. Längenmessung

Längenmessung geschah ursprünglich durch die Vorgabe und Vervielfältigung der Längeneinheit (z. B. Urmeter, Maßband, Zollstock, Messschraube, Mikrometerschraube, oft mit Noniusteilung zur genaueren Ablesung).

Interferometer: optische Präzisionslängenmessung (s. S. 357), wobei die Wellenlänge von monochromatischem Licht als Maßstab verwendet wird.

Sonar: akustische Entfernungsmessung durch die Laufzeitmessung von Ultraschall bei Schiffen, heute seltener zur Entfernungsmessung bei Kameras.

Radar: Entfernungsbestimmung durch Laufzeitmessung der an dem Objekt reflektierten elektromagnetischen Wellen.

Längenmessung ist bis zu einer relativen Genauigkeit von 10^{-14} möglich. Mit Mikrometerschrauben lassen sich Genauigkeiten im Bereich von 10^{-6} m erzielen.

Triangulation, ein geometrisches Verfahren zur Landvermessung. Dabei wird ausgenutzt, dass die verbleibenden zwei Seiten eines Dreiecks berechnet werden können, wenn eine Seite und zwei Winkel bekannt sind. Ausgehend von einer bekannten Basisstrecke können durch fortgesetzte Winkelmessung mittels eines **Theodoliten** beliebige Abstände vermessen werden.

Parallaxe, der Unterschied in der Richtung, in der ein Objekt erscheint, wenn es von zwei verschiedenen Punkten aus gesehen wird. Anwendung zur Entfernungsmessung.

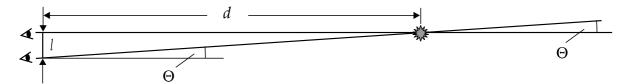


Abbildung 1.11: Parallaxe Θ bei Augenabstand l und Entfernung d: $\tan \Theta = l/d$ bzw. $\Theta \approx l/d$ für d >> l

3. Fläche und Volumen

Fläche A und Volumen V sind aus der Längenmessung abgeleitete Größen.

Quadratmeter, m², SI-Einheit der Fläche. Ein Quadratmeter ist die Fläche eines Quadrates der Seitenlänge 1 m.

$$[A] = m^2 = Quadratmeter.$$

Kubikmeter, m³, SI-Einheit des Volumens. Ein Kubikmeter ist das Volumen eines Würfels mit der Seitenlänge 1 m.

$$[V] = m^3 = Kubikmeter.$$

Weitere Einheiten siehe Tabelle 34.2/1 und Tabelle 34.3/1.

M Die Messung von Flächen kann durch die Unterteilung in einfache geometrische Figuren (Rechtecke, Dreiecke) erfolgen, deren Seiten und Winkel gemessen werden (z. B. durch Triangulation), woraus

das Ergebnis rechnerisch ermittelt wird. Direkte Flächenmessung kann durch Abzählen der abgedeckten Quadrate auf einem Messgitter erfolgen.

Analog kann das Volumen von Hohlräumen durch Ausfüllen mit geometrischen Körpern (Würfel, Pyramiden, ...) bestimmt werden.

Für die Volumenmessung von Flüssigkeiten sind Normgefäße mit bekanntem Volumen üblich. Das Volumen von Festkörpern kann durch Untertauchen in einer Flüssigkeit bestimmt werden (s. S. 170). Bei bekannter Dichte ρ eines homogenen Körpers kann das Volumen V aus der Masse m bestimmt werden, $V = m/\rho$.

Dezimalvorsätze bei Flächen- und Volumeneinheiten:

Der Dezimalvorsatz bezieht sich auf die Längeneinheit, nicht auf die Flächen- oder Volumeneinheit: 1 Kubikzentimeter = 1 cm³ = $(1 \text{ cm})^3 = (1 \cdot 10^{-2} \text{ m})^3 = 1 \cdot 10^{-6} \text{ m}^3$.

1.1.4 Winkel

1. Winkeldefinition

Winkel, ϕ , ein Maß für die Divergenz zwischen zwei Geraden in einer Ebene. Ein Winkel wird von zwei Geraden (Schenkeln) an ihrem Schnittpunkt (Scheitel) gebildet. Er wird gemessen, indem man vom Scheitelpunkt auf den Geraden eine Strecke (Radius) abträgt und die Länge des Kreisbogens bestimmt, der die Endpunkte der beiden Strecken verbindet (Abb. 1.12).

Winkel und Bogen				1
	Symbol	Einheit	Benennung	
l	ϕ	rad	Winkel	
$\varphi = -\frac{r}{r}$	1	m	Länge des Kreisbo	gens
	r	m	Radius	

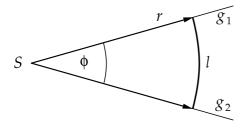


Abbildung 1.12: Bestimmung des Winkels ϕ zwischen den Geraden g_1 und g_2 durch Messung von Bogenlänge l und Radius r, $l = r \cdot \phi$. S: Scheitelpunkt

2. Winkeleinheiten

- a) **Radiant,** rad, SI-Einheit des Winkels. 1 rad ist der Winkel, bei dem die Länge des Kreisbogens, der die Endpunkte der Schenkel verbindet, genauso groß ist wie die Länge eines Schenkels. Ein Vollkreis entspricht dem Winkel 2π rad.
- Radiant (und Grad) sind ergänzende SI-Einheiten, d. h., sie haben die Einheit Eins.

$$1 \text{ rad} = 1 \text{ m}/1 \text{ m}.$$

b) Grad, °, ebenfalls zulässige Einheit für die Winkelmessung. Ein Grad ist definiert als der 360ste Teil eines Vollkreises. Umrechnung:

1 rad =
$$\frac{360^{\circ}}{2\pi}$$
 = 57.3°,

$$1^{\circ} = \frac{2\pi}{360^{\circ}} = 0.0175 \text{ rad}.$$

Unterteilungen sind:

1 Grad (°) = 60 Bogenminuten (′) = 3600 Bogensekunden (″).

c) Gon, (früher **Neugrad**), in der Vermessungstechnik gebräuchliche Einheit: 1 **gon**, der 100ste Teil eines rechten Winkels.

$$1 \text{ gon} = 0.9^{\circ} = 0.0157 \text{ rad}$$

$$1^{\circ} = 1.11 \text{ gon}$$

$$1 \text{ rad} = 63.7 \text{ gon}$$

M Winkelmessung:

Die Messung von Winkeln erfolgt direkt durch eine Winkelskala oder durch Messung der Sehne eines Winkels und Umrechnen bei bekanntem Radius. Bei der Bestimmung von Strecken durch Triangulation dient der **Theodolit** (s. S. 7) zur Winkelmessung.

3. Raumwinkel

Räumlicher Winkel, Ω , ist bestimmt durch diejenige Fläche einer Einheitskugel, die von einem Kegel mit der Spitze im Kugelmittelpunkt ausgeschnitten wird (**Abb. 1.13**).

Raumwinkel			
	Symbol	Einheit	Benennung
A	Ω	sr	Raumwinkel
$32 \equiv \frac{r^2}{r^2}$	A	m^2	von Kegel ausgeschnittene Fläche
	r	m	Radius der Kugel

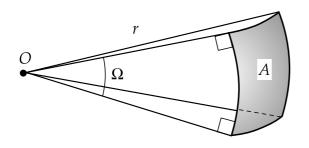


Abbildung 1.13: Bestimmung des Raumwinkels Ω durch Messung von Fläche A und Radius r ($\Omega = A/r^2$)

Steradiant, sr, SI-Einheit des Raumwinkels.

1 Steradiant ist der Raumwinkel, der auf einer Kugel mit dem Radius 1 m eine Oberfläche von 1 m² ausschneidet. Diese Oberfläche kann beliebig geformt sein und auch aus nichtzusammenhängenden Teilen bestehen.

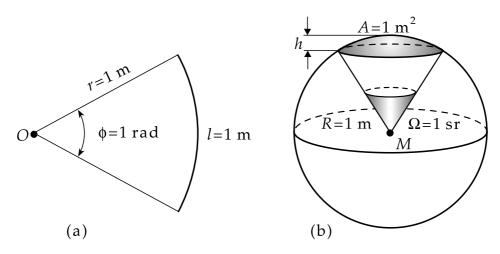


Abbildung 1.14: Definition der Winkeleinheiten Radiant (rad) (a) und Steradiant (sr) (b). Die gekrümmte Fläche der Kugelkappe A ist gegeben durch $A = 2\pi R \cdot h$

- \triangle Der räumliche Vollwinkel ist 4π sr.
- > Radiant und Steradiant haben die Einheit Eins.

1.1.5 Mechanische Systeme

1. Massenpunkt

Massenpunkt, Punktmasse, Idealisierung eines Körpers als mathematischer Punkt mit verschwindender Ausdehnung, aber endlicher Masse. Ein Massenpunkt besitzt keine Rotationsfreiheitsgrade. Bei der Behandlung der Bewegung eines Körpers kann das Modell des Massenpunktes benutzt werden, wenn es unter den gegebenen physikalischen Bedingungen ausreicht, nur die Bewegung des Schwerpunktes des Körpers zu untersuchen, ohne die räumliche Verteilung der Masse zu berücksichtigen.

- Zur mathematischen Beschreibung kann jeder starre Körper bei Bewegungen ohne Rotation durch einen Massenpunkt, dessen Ort im Schwerpunkt des starren Körpers liegt (s. S. 83), ersetzt werden.
- Bei der Beschreibung der Planetenbewegung im Sonnensystem genügt es oft, die Planeten als Punkte zu betrachten, da ihre Ausdehnungen verglichen mit den typischen Abständen zwischen Sonne und Planeten sehr klein sind.

2. System von Massenpunkten

System aus N einzelnen Massenpunkten $1, 2, \dots, N$, dessen Bewegung durch die Angabe der Ortsvektoren $\vec{\mathbf{r}}_1, \vec{\mathbf{r}}_2, \dots, \vec{\mathbf{r}}_N$ als Funktion der Zeit t beschrieben werden kann: $\vec{\mathbf{r}}_i(t), i = 1, 2, \dots, N$ (Abb. 1.15).

3. Kräfte im Massenpunktsystem

- a) Innere Kräfte, von den Teilchen des Systems aufeinander ausgeübte Kräfte. Innere Kräfte sind i. Allg. Zweikörperkräfte (Paarkräfte), die von den Abständen (und eventuell den Geschwindigkeiten) von nur jeweils zwei Teilchen abhängen.
- **b)** Äußere Kräfte, Kräfte, die von außen auf das System einwirken. Äußere Kräfte gehen von Körpern aus, die nicht zum System gehören.
- c) Zwangs- oder Reaktionskräfte (äußere Kräfte) entstehen durch Lagerung des Systems. Die Wechselwirkung zwischen dem System und der Führung wird durch Zwangskräfte ersetzt, die senkrecht zur erzwungenen Bahn wirken. Zwangskräfte schränken die Bewegung des Systems ein.
- Geführte Bewegungen: Masse an einseitig festgehaltenem Faden, Masse auf schiefer Ebene, Massenpunkt auf einer geraden, rotierenden Schiene, Gewehrkugel im Lauf.

4. Freie und abgeschlossene Systeme

Freier Massenpunkt, freies System von Massenpunkten, der Massenpunkt oder das Massenpunktsystem können den einwirkenden Kräften ohne einschränkende Zwangsbedingungen folgen.

Abgeschlossenes System, ein System, auf das keine äußeren Kräfte wirken.

5. Starrer Körper,

ein Körper, dessen materielle Bestandteile stets die gleichen Abstände voneinander behalten, also untereinander starr verbunden sind. Für die Abstände aller Punkte i, j des starren Körpers gilt: $|\vec{\mathbf{r}}_i(t) - \vec{\mathbf{r}}_j(t)| = r_{ij} = \text{const.}$ (Abb. 1.15).

6. Bewegung starrer Körper

Jede Bewegung eines starren Körpers kann zerlegt werden in zwei Bewegungsarten (Abb. 1.16):

- a) Translation (fortschreitende Bewegung), jeder Punkt des Körpers legt die gleiche Strecke in gleicher Richtung zurück: Der Körper wird parallel verschoben. Die Bewegung des Körpers kann durch die Bewegung eines einzelnen repräsentativen Punktes des Körpers beschrieben werden.
- **b) Rotation** (**Drehung**), bei der sich alle Punkte des Körpers um eine gemeinsame Achse drehen. Jeder Punkt des Körpers behält dabei seinen Abstand von der Drehachse und legt einen Weg auf einem Kreisbogen zurück.

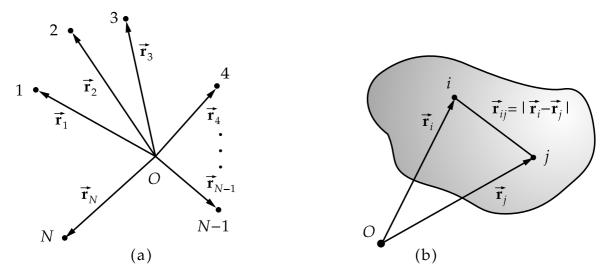


Abbildung 1.15: Mechanische Systeme. (a): System aus N Massenpunkten, (b): starrer Körper

Abbildung 1.16: Translation und Rotation eines starren Körpers. (a): Translation, (b): Rotation, (c): Translation und Rotation

7. Deformierbarer Körper,

kann seine Gestalt unter dem Einfluss von Kräften ändern. Beschreibbar durch

- viele diskrete Massenpunkte, die durch Kräfte verbunden sind, oder
- ein Kontinuumsmodell, nach dem der Körper den Raum lückenlos ausfüllt.

1.2 Bewegung in einer Dimension

Im folgenden werden Bewegungen auf einer geraden Bahn betrachtet. Als Koordinate wählt man den Abstand x des Körpers von einem festgelegten Punkt auf der Bewegungsachse. Das Vorzeichen von x gibt an, auf welcher Seite der Achse sich der Körper befindet. Die Wahl der positiven x-Achse ist Konvention.

Ort-Zeit-Diagramm, grafische Darstellung der Bewegung (**Ortsfunktion** x(t)) eines Massenpunktes in einem zweidimensionalen Diagramm. Auf der waagerechten Achse ist die Zeit t und auf der senkrechten Achse der Ort x (Koordinate) aufgetragen.

1.2.1 Geschwindigkeit

Geschwindigkeit, eine Größe, die zu jedem Zeitpunkt die Bewegung eines Massenpunktes charakterisiert. Man unterscheidet die Durchschnittsgeschwindigkeit \bar{v}_x und die Momentangeschwindigkeit v_x .

1.2.1.1 Durchschnittsgeschwindigkeit

1. Definition der Durchschnittsgeschwindigkeit

Durchschnittsgeschwindigkeit, \bar{v}_x , während eines Zeitraums $\Delta t \neq 0$, gibt das Verhältnis des in diesem Zeitraum zurückgelegten Wegelements Δx zur dazu benötigten Zeit Δt an (**Abb. 1.17**).

Durchschnittsgeschwindigkeit =	Wegelemen Zeitinterva				LT ⁻¹
$x_2 - x_1$		Symbol	Einheit	Benennung	
$\bar{v}_x = \frac{x_2 - x_1}{t_2 - t_1}$		$\bar{v}_{\scriptscriptstyle X}$	m/s	Durchschnittsgeschwi	ndigkeit
		x_1, x_2	m	Ort zur Zeit t_1 bzw. t_2	
$= \frac{x(t_1 + \Delta t) - x(t_1)}{(t_1 + \Delta t) - t_1}$		x(t)	m	Ortsfunktion	
		t_1, t_2	s	Anfangs- und Endzeit	punkt
$=\frac{\Delta x}{\Delta x}$		Δx	m	zurückgelegtes Wegel	ement
$-\Delta t$		Δt	s	Zeitintervall	

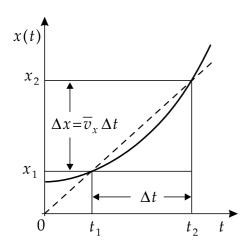


Abbildung 1.17: Mittlere Geschwindigkeit \bar{v}_x der eindimensionalen Bewegung im Ort-Zeit-Diagramm

2. Einheit der Geschwindigkeit

Meter pro Sekunde, ms⁻¹, die SI-Einheit der Geschwindigkeit.

1 m/s ist die Geschwindigkeit eines Körpers, der in einer Sekunde einen Meter zurücklegt. Weitere Einheiten s. **Tabelle 34.2/1**.

Ein Körper, der in einer Minute die Strecke von 100 m zurücklegt, hat die Durchschnittsgeschwindigkeit

$$\bar{v}_x = \frac{\Delta x}{\Delta t} = \frac{100 \text{ m}}{60 \text{ s}} = 1.67 \text{ m/s}.$$

3. Messung der Geschwindigkeit

Geschwindigkeitsmessung kann durch Laufzeitmessung auf einem Abschnitt bekannter Länge erfolgen (Lichtschranke). Sie erfolgt oft auch durch Umwandlung der Translationsbewegung in eine Drehbewegung. **Tachometer**, zur Messung von Geschwindigkeiten in Kraftfahrzeugen. Dabei wird die Drehbewegung der Räder durch eine Welle in das Messgerät übertragen, in dem der Zeiger durch die bei dieser Drehbewegung entstehende Fliehkraft bewegt wird (**Fliehkraft-Tachometer**).

Beim **Wirbelstrom-Tachometer** wird die Drehbewegung auf einen Magneten übertragen, der in einer Aluminiumtrommel, an der der Zeiger montiert ist, Wirbelströme und damit ein Drehmoment erzeugt.

Elektrische Tachometer basieren auf einem Impulsgeber, der entsprechend der Umdrehungsgeschwindigkeit Impulsfolgen mit größerer oder kleinerer Frequenz gibt.

Geschwindigkeitsmessung durch **Dopplereffekt** (s. S. 277) ist mit Radar möglich (Kraftfahrzeugtechnik, Flugzeuge, Astronomie).

- Die Geschwindigkeit \bar{v}_x kann ein positives oder ein negatives Vorzeichen haben, entsprechend einer Bewegung in Richtung der positiven Koordinatenachse oder der negativen Koordinatenachse.
- Die Durchschnittsgeschwindigkeit hängt i. Allg. von der Dauer Δt der Messung ab. Ausnahme: Bewegung mit konstanter Geschwindigkeit.

1.2.1.2 Momentangeschwindigkeit

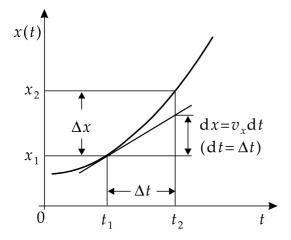
1. Definition der Momentangeschwindigkeit

Momentangeschwindigkeit, der Grenzwert der Durchschnittsgeschwindigkeit für gegen Null gehende Zeitintervalle (Ableitung, Differenzialquotient).

Momentangeschwindigkeit				LT ⁻¹
A	Symbol	Einheit	Benennung	
$v_x(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$	$v_{x}(t)$	m/s	Momentangeschwi	ndigkeit
d d r(t)	x(t)	m	Ort zur Zeit t	
$= \frac{\mathrm{d}}{\mathrm{d}t}x(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t} = \dot{x}(t)$	Δt	s	Zeitintervall	
di di	Δx	m	Wegelement	

Die Funktion x(t) gibt die Ortskoordinate x des Punktes zu jedem Zeitpunkt t an. Die Momentangeschwindigkeit $v_x(t)$ ist im Ort-Zeit-Diagramm die Steigung der Tangente von x(t) im Punkt t (**Abb. 1.18**).

Folgende Fälle sind zu unterscheiden, wobei das Zeitintervall Δt stets eine positive Größe ist:


- $v_x > 0$: $\Delta x > 0$ und daher $x(t + \Delta t) > x(t)$. Der Körper bewegt sich in Richtung der positiven Koordinatenachse, d. h., die x-t-Kurve steigt an: Die Ableitung der Kurve x(t) ist positiv.
- $v_x = 0$: $\Delta x = 0$ und daher $x(t + \Delta t) = x(t)$, der Abstand Δx ist konstant (Null). Der Körper ist (in diesem Koordinatensystem) in Ruhe (eventuell nur kurzzeitig), d. h., v_x ist die waagerechte Tangente an die x-t-Kurve, die Ableitung der Kurve x(t) ist null.
- $v_x < 0$: $\Delta x < 0$ und daher $x(t + \Delta t) < x(t)$. Der Körper bewegt sich in Richtung der negativen Koordinatenachse, d. h., die x-t-Kurve fällt, die Ableitung der Kurve x(t) ist negativ.

2. Geschwindigkeit-Zeit-Diagramm,

grafische Darstellung der Momentangeschwindigkeit $v_x(t)$ als Funktion der Zeit t. Um bei gegebener Geschwindigkeitskurve $v_x(t)$ die Ortsfunktion x(t) zu bestimmen, ist die Bewegung in kleine Intervalle Δt zu zerlegen (**Abb. 1.19**). Ist das Intervall von t_1 bis t_2 in N Intervalle der Länge $\Delta t = (t_2 - t_1)/N$ unterteilt, t_i der Anfang des i-ten Zeitintervalls und $\bar{v}_x(t_i)$ die Durchschnittsgeschwindigkeit in diesem Intervall, so gilt

$$x(t_2) = x(t_1) + \lim_{\Delta t \to 0} \sum_{i=1}^{N-1} \bar{v}_x(t_i) \cdot \Delta t = x(t_1) + \int_{t_1}^{t_2} v_x(t) dt.$$

Weg = bestimmtes Integral der Geschwindigkeit über die Zeit				
t o	Symbol	Einheit	Benennung	
$x(t) = x(t_1) + \int v_x(\tau) \mathrm{d}\tau$	x(t)	m	Bewegungskurve	
J t_1	$\begin{vmatrix} v_x(t) \\ t_1, t_2 \end{vmatrix}$	m/s	Geschwindigkeitskurv	e
$x(t_2) = x(t_1) + \int_{t_1}^{t_2} v_x(t) dt$	t_1, t_2	S	Anfangs- und Endzeit	ounkt
•				

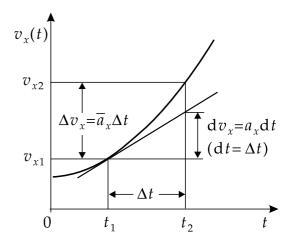


Abbildung 1.18: Momentangeschwindigkeit v_x der eindimensionalen Bewegung im Ort-Zeit-Diagramm zum Zeitpunkt t_1

Abbildung 1.19: Geschwindigkeit-Zeit-Diagramm der eindimensionalen Bewegung. \bar{a}_x : Durchschnittsbeschleunigung, a_x : Momentanbeschleunigung zum Zeitpunkt t_1

1.2.2 Beschleunigung

Beschleunigung, dient zur Beschreibung von nicht gleichförmigen Bewegungen, in deren Verlauf sich die Geschwindigkeit ändert. Die Beschleunigung kann wie die Geschwindigkeit positiv oder negativ sein.

Sowohl eine Erhöhung (**positive Beschleunigung**) als auch eine Verringerung der Geschwindigkeit (**Verzögerung**, als Folge eines Bremsvorgangs, negative Beschleunigung) wird als Beschleunigung bezeichnet.

1. Durchschnittsbeschleunigung,

 \bar{a}_x , Änderung der Geschwindigkeit während eines Zeitintervalls, geteilt durch die Länge des Zeitintervalls:

$Beschleunigung = \frac{Geschwindigskeitsän}{Zeitintervall}$				LT ⁻²
	Symbol	Einheit	Benennung	
	\bar{a}_x	m/s ²	Durchschnittsbeschleunigu	ung
$\bar{a}_x = \frac{\Delta v_x}{1} = \frac{v_{x2} - v_{x1}}{1}$	Δv_x	m/s	Geschwindigkeitsänderung	g
$\bar{a}_x = \frac{\Delta v_x}{\Delta t} = \frac{v_{x2} - v_{x1}}{t_2 - t_1}$	Δt	S	Zeitintervall	
	v_{x1}, v_{x2}	m/s	Anfangs- und Endgeschwi	indigkeit
	t_1, t_2	S	Anfangs- und Endzeit	

Meter pro Sekundenquadrat, m/s², die SI-Einheit der Beschleunigung. 1 m/s² ist die Beschleunigung eines Körpers, der in einer Sekunde seine Geschwindigkeit um 1 m/s erhöht.

Sind die Durchschnittsbeschleunigung und die Anfangsgeschwindigkeit gegeben, so lautet die Endgeschwindigkeit:

$$v_{x2} = v_{x1} + \bar{a}_x \cdot \Delta t$$
.

Die benötigte Zeit, um von der Geschwindigkeit v_{x1} auf die Geschwindigkeit v_{x2} zu kommen, ist bei gegebener Durchschnittsbeschleunigung:

$$\Delta t = \frac{v_{x2} - v_{x1}}{\bar{a}_x}$$

2. Momentanbeschleunigung,

Grenzwert der Durchschnittsbeschleunigung für sehr kleine Zeitintervalle ($\Delta t \rightarrow 0$).

Momentanbeschleunigung				LT ⁻²
	Symbol	Einheit	Benennung	
$a_x(t) = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{\mathrm{d}v_x}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} v_x(t)$	Δt	S	Zeitintervall	
	Δv_x	m/s	Geschwindigkeitsä	inderung
	$a_x(t)$	m/s ²	Beschleunigung	
	$v_x(t)$	m/s	Geschwindigkeit	

Die Momentanbeschleunigung $a_x(t)$ ist die erste Ableitung der Geschwindigkeitsfunktion $v_x(t)$ und damit die zweite Ableitung der Ortsfunktion x(t):

$$a_x(t) = \frac{\mathrm{d}v_x(t)}{\mathrm{d}t} = \dot{v}_x(t) = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\mathrm{d}x(t)}{\mathrm{d}t} = \frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2} = \ddot{x}(t).$$

Anschaulich stellt sie die Steigung der Tangente im Geschwindigkeit-Zeit-Diagramm dar (**Abb. 1.20**). Folgende Fälle sind zu unterscheiden:

- $a_x > 0$: $\Delta v_x > 0$ und daher $v_{x2} > v_{x1}$. Für $v_{x1} > 0$ bewegt sich der Körper mit wachsender Geschwindigkeit, d. h. im v-t-Diagramm steigt die Kurve.
- $a_x = 0$: $\Delta v_x = 0$ und daher $v_{x2} = v_{x1}$. Der Körper ändert seine Geschwindigkeit (eventuell nur kurzzeitig) nicht.
- $a_x < 0$: $\Delta v_x < 0$ und daher $v_{x2} < v_{x1}$. Für $v_{x1} > 0$ bewegt sich der Körper mit kleiner werdender Geschwindigkeit.

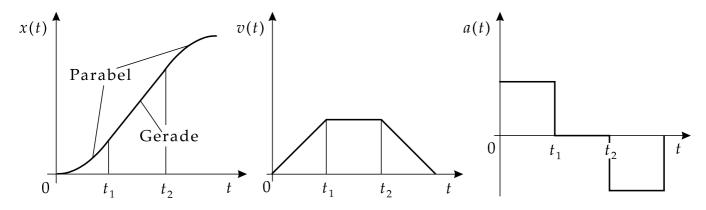


Abbildung 1.20: Ort-Zeit-, Geschwindigkeit-Zeit- und Beschleunigung-Zeit-Diagramm. Der Körper wird vom Ursprung ausgehend zunächst gleichmäßig beschleunigt, bewegt sich dann mit konstanter Geschwindigkeit und wird schließlich wieder gleichmäßig abgebremst

3. Bestimmung der Geschwindigkeit aus der Beschleunigung

Ist die Beschleunigung als Funktion der Zeit $a_x(t)$ gegeben, so lässt sich die Geschwindigkeit durch Integration bestimmen:

Geschwindigkeit = Integral der Beschleunigung über die Zeit				
t _.	Symbol	Einheit	Benennung	
$v_x(t) = v_x(t_1) + \int a_x(au) \mathrm{d} au$	$v_x(t)$	m/s	Geschwindigkeitsk	urve
J	$a_x(t)$	m/s^2	Beschleunigungsku	ırve
$v_x(t_2) = v_x(t_1) + \int\limits_{-\infty}^{t_2} a_x(t) \mathrm{d}t$	t_1, t_2	S	Anfangs- und Endz	eitpunkt
t_1				

Wenn ein Körper die Geschwindigkeit $v_{1x} < 0$ hat und eine positive Beschleunigung $a_x > 0$ erfährt, so wird seine Geschwindigkeit vom Betrage her kleiner! Der Begriff "Beschleunigung" bezieht sich auf Bewegungen in Richtung der positiven x-Achse.

1.2.3 Einfache Bewegungen in einer Dimension

Im Folgenden werden die gleichförmige und die gleichmäßig beschleunigte Bewegung als einfachste Formen der Bewegung und ihre physikalische Beschreibung diskutiert.

Bei Bewegungen in einer Dimension können Index x und Vektorpfeil bei Geschwindigkeit v und der Beschleunigung a weggelassen werden. Es ist aber zu beachten, dass v und a positive und negative Werte annehmen können, also nicht Beträge, sondern Komponenten von Vektoren darstellen.

1. Gleichförmige Bewegung,

eine Bewegung, bei der der Körper seine Geschwindigkeit nicht verändert. Dann gilt $\bar{v}_x = v_x = \text{const.}$ (Abb. 1.21).

Gesetze der gleichförmigen Bewo	egung		
	Symbol	Einheit	Benennung
$x(t) = x_0 + v_x t$	x(t)	m	Ort zur Zeit t
$v_x(t) = v_x = v_0$	x_0	m	Anfangsort ($t = 0$)
	v_x	m/s	gleichförmige Geschwindigkeit
$a_x(t)=0$	v_0	m/s	Anfangsgeschwindigkeit
	t	S	Zeit

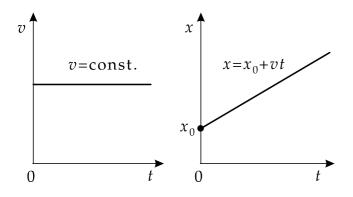


Abbildung 1.21: Gleichförmige Bewegung

- ▲ Eine gleichförmige Bewegung liegt vor, wenn auf den Körper keine Kraft einwirkt.
- Die Bewegungskurve x(t) ergibt sich als Integral der Geschwindigkeitskurve $v_x(t) = \text{const. zu}$

$$x(t) = x_0 + \int_0^t v_x(t') dt' = x_0 + v_0 t.$$

Anschaulich ist $v_x(t)$ eine Gerade und das Integral die Fläche unter der Geraden zwischen den Punkten 0 und t auf der Zeitachse.

2. Gleichmäßig beschleunigte Bewegung,

eine Bewegung, bei der die Beschleunigung konstant ist. Dann gilt $\bar{a}_x = a_x = a$ und

$$v_x(t) = at + v_0$$
,

wenn v_0 die Anfangsgeschwindigkeit ist (**Abb. 1.22**).

Daraus folgt die Bewegungskurve durch Integration als

$$x(t) = \int_0^t v_x(t') dt' + x_0 = \int_0^t (at' + v_0) dt' + x_0 = \frac{a}{2}t^2 + v_0t + x_0.$$

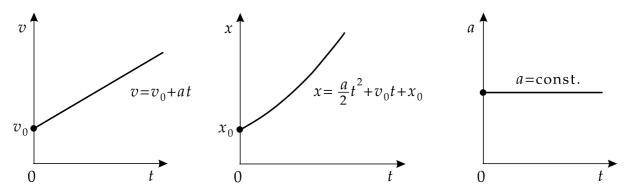


Abbildung 1.22: Gleichmäßig beschleunigte Bewegung

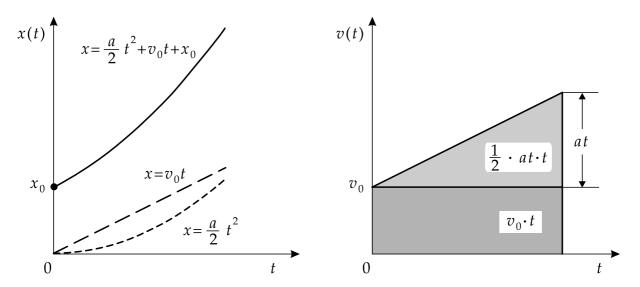


Abbildung 1.23: Zurückgelegte Strecke bei gleichmäßig beschleunigter Bewegung

Dieses Ergebnis kann auch aus dem Geschwindigkeits-Zeit-Diagramm abgelesen werden: die Fläche unter der Kurve ist aus einem Rechteck der Fläche $v_0 \cdot t$ und einem Dreieck der Fläche $at^2/2$ (Höhe at und Grundlinie t) zusammengesetzt (**Abb. 1.23**).

Gleichmäßig beschleunigte Bewegung			
	Symbol	Einheit	Benennung
a_2	x(t)	m	Ort zur Zeit t
$x(t) = \frac{a}{2}t^2 + v_0t + x_0$	$v_x(t)$	m/s	Geschwindigkeit
$v_{\mathbf{x}}(t) = at + v_0$	$\mid t \mid$	S	Zeit
$a_x(t) = a = \text{const.}$	a_x , a	m/s ²	Beschleunigung
$u_x(t) = u = \text{const.}$	v_0	m/s	Anfangsgeschwindigkeit
	x_0	m	Anfangsort

▲ Eine gleichmäßig beschleunigte Bewegung liegt vor, wenn eine konstante Kraft auf den Körper einwirkt.

Durch Umstellen findet man:

• Anfangs- und Endgeschwindigkeit v_0 und $v_x(t)$ gegeben, Ort x(t) gesucht: $x(t) = \frac{v_0 + v_x(t)}{2}t + x_0.$

• Anfangsgeschwindigkeit v_0 und Ort x(t) gegeben, $x_0 = 0$, Endgeschwindigkeit $v_x(t)$ gesucht: $v_x(t) = \sqrt{v_0^2 + 2ax(t)}$.

• Sonderfall: Start aus der Ruhelage ($v_0 = 0, x_0 = 0$):

$$v_x(t) = at = \sqrt{2ax(t)}, \quad x(t) = \frac{v_x(t)t}{2} = \frac{at^2}{2}.$$

3. Verzögerungsvorgänge

Ein gleichmäßiger Verzögerungsvorgang (s. Abb. 1.24) ist ein Sonderfall der gleichmäßig beschleunigten Bewegung. Bei einer Verzögerung haben Geschwindigkeit und Beschleunigung entgegengesetztes Vorzeichen, so dass sich der Betrag der Geschwindigkeit verringert, bis die Anfangsgeschwindigkeit v_0 aufgezehrt ist. Der benötigte **Bremsweg** s_B bis zum Stillstand ist aus der Anfangsgeschwindigkeit und der Bremsverzögerung zu bestimmen; bei gegebenem Bremsweg s_B und bekannter Bremsverzögerung kann die Anfangsgeschwindigkeit bestimmt werden.

Gleichmäßige Verzögerung			
$ v_0 $ v_0	Symbol	Einheit	Benennung
$t_B = \frac{1}{ a } = -\frac{1}{a}$	S_B	m	Bremsweg
v_0^2	t_B	S	Abbremszeit
$s_B = \frac{c_0}{2 a }$	$ v_0 $	m/s	Betrag der Anfangsgeschwindigkeit
2 a	a	m/s ²	Bremsverzögerung
$v_0 = \sqrt{2 a s_B}$			

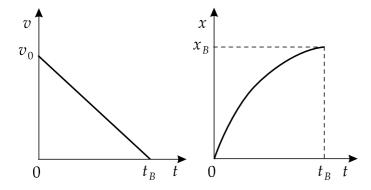


Abbildung 1.24: Geschwindigkeit-Zeit- und Ort-Zeit-Diagramm eines gleichmäßigen Bremsvorgangs. x_B : Bremsweg, t_B : Abbremszeit

- Die Betrachtung eines Bremsvorgangs als gleichmäßig gebremste Bewegung ist eine Idealisierung. Eine Abbremsung ist im Allgemeinen ungleichmäßig.
- Bei einem Automobil kann eine Verzögerung von etwa |a| = 4 m/s² angenommen werden. Für eine Geschwindigkeit von 50 km/h = 13.9 m/s ergibt sich ein Bremsweg von

$$s_B = \frac{v_0^2}{2|a|} = \frac{(13.9 \text{ m/s})^2}{2 \cdot 4 \text{ m/s}^2} = 24 \text{ m}.$$

In der Automobiltechnik gilt für den Bremsweg die Abschätzung:

$$s_B \approx \left(\frac{v_0}{10 \text{ km/h}}\right)^2 \text{m} + 3 \cdot \frac{v_0}{10 \text{ km/h}} \text{ m}.$$

Dabei ist eine Reaktionszeit des Fahrers von ca. 1 s berücksichtigt.

1.3 Bewegung in mehreren Dimensionen

Bewegungen in mehreren Dimensionen werden zweckmäßig in Vektorschreibweise dargestellt.

1. Bahnkurve im dreidimensionalen Raum

Zur Lagebestimmung eines Punktes im dreidimensionalen Raum ist die Angabe von drei Koordinaten erforderlich. In einem kartesischen Koordinatensystem fasst man diese zum **Ortsvektor** mit den Komponenten x, y und z zusammen:

$$\vec{\mathbf{r}}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}.$$

Die Vektorfunktion $\vec{\mathbf{r}}(t)$ beschreibt die Bahnkurve eines Punktes oder Körpers im Raum, auch Raumkurve genannt (**Abb. 1.25**). Die Komponenten des Ortsvektors geben die x-, y- und z-Koordinate des Punktes zum Zeitpunkt t an.

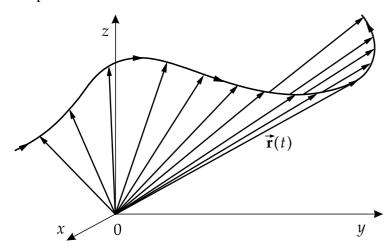


Abbildung 1.25: Bahnkurve in drei Dimensionen

2. Tangente und Normale

Tangente an eine Raumkurve in einem bestimmten Punkt M, eine Gerade, die die Kurve in diesem Punkt berührt. Analytisch ergibt sie sich durch die Ableitung der Raumkurve nach der Zeit in diesem Punkt. Damit gibt sie den Geschwindigkeitsvektor eines Massenpunktes an. Anschaulich zeigt die positive Richtung der Tangente in die momentane Richtung der Bewegung. Die **Normale** an eine Kurve in einem bestimmten Punkt M ist eine Gerade senkrecht zur Tangente in diesem Punkt. Sie steht senkrecht zur momentanen Richtung der Bewegung (**Abb. 1.26**).

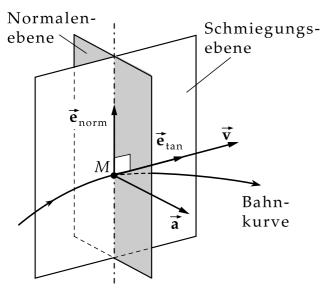


Abbildung 1.26: Tangente und Normalebene einer Bahnkurve. Tangente und Hauptnormale liegen in der Schmiegungsebene, die senkrecht auf der Normalebene steht

- Die Tangente an einen Kreis steht senkrecht auf dem Radiusvektor. Die Normale ist parallel zum Radiusvektor.
- Im dreidimensionalen Raum gibt es in einem Punkt der Raumkurve mehr als eine Normale. Alle Normalen durch den Berührungspunkt der Tangente bilden die **Normalebene**. Die **Schmiegungsebene** ist die Grenzlage einer Ebene, die durch *M* und zwei benachbarte Kurvenpunkte geht, wenn die beiden äußeren Kurvenpunkte gegen *M* streben.

1.3.1 Geschwindigkeitsvektor

Geschwindigkeitsvektor, \vec{v} , gibt Richtung und Betrag der Geschwindigkeit des Massenpunktes an.

1. Mittlere Geschwindigkeit,

 $\vec{\overline{v}}$ in einem Zeitintervall Δt , definiert durch (**Abb. 1.27**)

$$\vec{\mathbf{v}} = \frac{\vec{\mathbf{r}}(t_2) - \vec{\mathbf{r}}(t_1)}{t_2 - t_1} = \frac{\Delta \vec{\mathbf{r}}}{\Delta t} = \begin{pmatrix} \frac{\Delta x}{\Delta t} \\ \frac{\Delta y}{\Delta t} \\ \frac{\Delta z}{\Delta t} \end{pmatrix}, \qquad \Delta \vec{\mathbf{r}} = \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}.$$

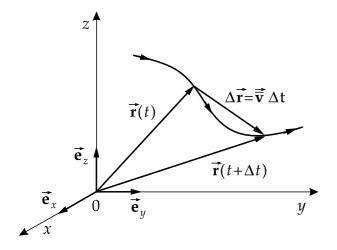


Abbildung 1.27: Mittlere Geschwindigkeit \vec{v}

2. Momentangeschwindigkeit,

ergibt sich durch den Grenzübergang $\Delta t \rightarrow 0$ (**Abb. 1.28**):

Momentangeschwindigkeit				LT ⁻¹
$\vec{\mathbf{r}}(t+\Lambda t) - \vec{\mathbf{r}}(t)$	Symbol	Einheit	Benennung	
$ec{\mathbf{v}}(t) = \lim_{\Delta t o 0} rac{ec{\mathbf{r}}(t + \Delta t) - ec{\mathbf{r}}(t)}{\Delta t}$	$\vec{\mathbf{v}}(t)$	m/s	Geschwindigkeitsvektor	ſ
	Δt	s	Zeitintervall	
$d\vec{\mathbf{r}} \rightarrow \begin{pmatrix} x(t) \\ \vdots \\ x(t) \end{pmatrix}$	t	S	Zeit	
$=rac{dec{\mathbf{r}}}{dt}=\dot{ec{\mathbf{r}}}(t)=egin{pmatrix}\dot{x}(t)\ \dot{y}(t)\ \dot{z}(t)\end{pmatrix}$	$\vec{\mathbf{r}}(t)$	m	Bahnkurve	
$\langle z(t) \rangle$	$\dot{x}, \dot{y}, \dot{z}$	m/s	Geschwindigkeitskompo	onenten

Die Komponenten des Geschwindigkeitsvektors $\vec{\mathbf{v}}(t)$ sind die Ableitungen der Koordinatenfunktionen x(t), y(t) und z(t) nach der Zeit. Sie geben seine Projektionen auf die x-, y- und z-Achse an:

$$v_x = \dot{x}$$
, $v_y = \dot{y}$, $v_z = \dot{z}$.

3. Eigenschaften des Geschwindigkeitsvektors

Der Betrag des Geschwindigkeitsvektors, v, gibt die pro Zeiteinheit zurückgelegte Wegstrecke an.

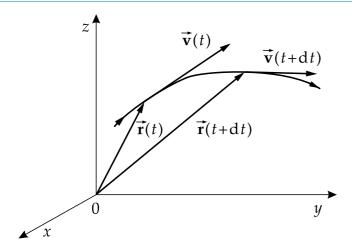


Abbildung 1.28: Momentangeschwindigkeit $\vec{\mathbf{v}}(t)$

- \triangle Der Geschwindigkeitsvektor \vec{v} zeigt in die Richtung der Bewegung.
- Der Geschwindigkeitsvektor $\vec{\mathbf{v}}(t)$ gibt die Änderung des Ortsvektors an, d $\vec{\mathbf{r}} = \vec{\mathbf{v}}$ dt. Dabei ist es möglich, dass sich der Ortsvektor ändert, sein Betrag aber konstant bleibt (Kreisbewegung). Für die Änderung des Abstands vom Ursprung ergibt sich in Vektorschreibweise mithilfe der Produktregel und der Kettenregel der Differenziation:

$$\frac{\mathrm{d}|\vec{\mathbf{r}}|}{\mathrm{d}t} = \frac{\mathrm{d}\sqrt{\vec{\mathbf{r}}^2}}{\mathrm{d}t} = \frac{\vec{\mathbf{r}}\cdot\vec{\mathbf{v}}}{|\vec{\mathbf{r}}|}.$$

Insbesondere bleibt der Abstand konstant, wenn $\vec{\mathbf{r}} \cdot \vec{\mathbf{v}} = 0$ ist, also wenn der Geschwindigkeitsvektor senkrecht auf dem Radiusvektor steht. Eine Bewegung, bei der der Abstand vom Ursprung oder einem anderen festen Punkt unverändert bleibt, ist eine **Kreisbewegung**.

Tangenteneinheitsvektor, \vec{e}_{tan} , ein Vektor der Länge Eins, der in die positive Richtung der Tangente an eine Kurve zeigt. Man kann dann die Geschwindigkeit als

$$\vec{\mathbf{v}} = v \, \vec{\mathbf{e}}_{tan} \,, \qquad \vec{\mathbf{e}}_{tan} = \frac{\vec{\mathbf{v}}}{v}$$

schreiben.

4. Beispiel: Kreisbewegung in Ebene

Eine Kreisbewegung in der x-y-Ebene mit konstanter Winkelgeschwindigkeit $\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t} \ (\varphi(t) = \omega t)$ ist gegeben durch den Ortsvektor (**Abb. 1.29**)

$$\vec{\mathbf{r}}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} r\cos\omega t \\ r\sin\omega t \\ 0 \end{pmatrix}.$$

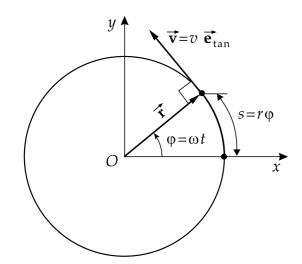


Abbildung 1.29: Kreisbewegung. v bezeichnet den Betrag der Geschwindigkeit

Maßeinheit der Winkelgeschwindigkeit: $[\omega] = \text{rad/s}$.

Der Geschwindigkeitsvektor \vec{v} ist daher

$$\vec{\mathbf{v}}(t) = \dot{\vec{\mathbf{r}}}(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -r\omega\sin\omega t \\ r\omega\cos\omega t \\ 0 \end{pmatrix}.$$

Sein Betrag ist $|\vec{\mathbf{v}}(t)| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} = r\omega$.

1.3.2 Beschleunigungsvektor

1. Beschleunigungsvektor,

 \vec{a} , die zeitliche Ableitung des Geschwindigkeitsvektors. Er gibt die Änderung der Geschwindigkeit pro Zeiteinheit an (**Abb. 1.30**). Analog zum Vorgehen bei der Geschwindigkeit kann man einen mittleren Beschleunigungsvektor \vec{a} während eines Zeitintervalls Δt ,

$$\vec{\overline{\mathbf{a}}}(t) = \frac{\vec{\mathbf{v}}(t + \Delta t) - \vec{\mathbf{v}}(t)}{\Delta t},$$

und einen momentanen Beschleunigungsvektor durch den Grenzübergang $\Delta t \rightarrow 0$ einführen:

$$\vec{\mathbf{a}}(t) = \begin{pmatrix} a_x(t) \\ a_y(t) \\ a_z(t) \end{pmatrix} = \lim_{\Delta t \to 0} \frac{\vec{\mathbf{v}}(t + \Delta t) - \vec{\mathbf{v}}(t)}{\Delta t} = \frac{d\vec{\mathbf{v}}(t)}{dt} = \begin{pmatrix} \dot{v}_x(t) \\ \dot{v}_y(t) \\ \dot{v}_z(t) \end{pmatrix} = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{pmatrix}.$$

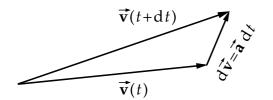


Abbildung 1.30: Beschleunigungsvektor

Die Komponenten des Beschleunigungsvektors sind die zweiten Ableitungen der Koordinatenfunktionen nach der Zeit:

$$a_x = \ddot{x}$$
, $a_y = \ddot{y}$, $a_z = \ddot{z}$.

2. Beispiel: Beschleunigungsvektor bei Kreisbewegung

Bei einer Kreisbewegung mit konstanter Winkelgeschwindigkeit ω ist der Beschleunigungsvektor

$$\vec{\mathbf{a}}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} -r\omega \sin \omega t \\ r\omega \cos \omega t \\ 0 \end{pmatrix} = \begin{pmatrix} -r\omega^2 \cos \omega t \\ -r\omega^2 \sin \omega t \\ 0 \end{pmatrix} = -\omega^2 \vec{\mathbf{r}}(t).$$

Beschleunigungsvektor und Radiusvektor sind antiparallel, der Beschleunigungsvektor zeigt zum Mittelpunkt. Der Betrag der Beschleunigung ist

$$|\vec{\mathbf{a}}(t)| = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2} = r\omega^2 \sqrt{\cos^2 \omega t + \sin^2 \omega t + 0} = r\omega^2.$$

3. Tangential- und Normalbeschleunigung

Tangentialbeschleunigung, \vec{a}_{tan} und Normalbeschleunigung, \vec{a}_{norm} , die Projektionen des Beschleunigungsvektors auf die Tangente bzw. der senkrecht dazu stehenden Normale (Abb. 1.31):

$$\vec{\mathbf{a}} = \vec{\mathbf{a}}_{tan} + \vec{\mathbf{a}}_{norm}$$
.

Nach der Produktregel der Differenzialrechnung gilt:

$$\vec{\mathbf{a}} = \frac{\mathrm{d}(v\,\vec{\mathbf{e}}_{\tan})}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{\mathbf{e}}_{\tan} + v\frac{\mathrm{d}\vec{\mathbf{e}}_{\tan}}{\mathrm{d}t}.$$

Der erste Term ist die Tangentialbeschleunigung.

$$\vec{\mathbf{a}}_{tan} = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{\mathbf{e}}_{tan}, \qquad a_{tan} = \dot{v}.$$

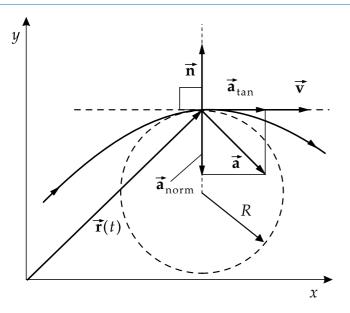


Abbildung 1.31: Tangential- und Normalbeschleunigung \vec{a}_{tan} , \vec{a}_{norm}

▲ Der Betrag der Tangentialkomponente der Beschleunigung ist die zeitliche Änderung des Betrags der Geschwindigkeit.

Der zweite Term ist die Normalbeschleunigung,

$$\vec{\mathbf{a}}_{\text{norm}} = v \frac{d\vec{\mathbf{e}}_{\text{tan}}}{dt} \,.$$

ightharpoonup Da der Betrag $|\vec{e}_{tan}|$ des Tangenteneinheitsvektors im Zeitablauf unverändert gleich Eins bleibt, gilt:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\vec{\mathbf{e}}_{\tan})^2 = 2\vec{\mathbf{e}}_{\tan} \cdot \frac{\mathrm{d}\vec{\mathbf{e}}_{\tan}}{\mathrm{d}t} = 0.$$

Die Zeitableitung des Tangenteneinheitsvektors steht senkrecht auf dem Tangenteneinheitsvektor. Der zweite Term gibt die Normalkomponente der Beschleunigung an. Die von $\vec{\mathbf{e}}_{tan}$ und $d\vec{\mathbf{e}}_{tan}/dt$ aufgespannte Ebene ist die **Schmiegungsebene** der Bahnkurve.

4. Beispiel: Kreisbewegung

Für die Kreisbewegung mit konstanter Winkelgeschwindigkeit gilt

$$\vec{\mathbf{a}}(t) = \begin{pmatrix} -r\omega^2 \cos \omega t \\ -r\omega^2 \sin \omega t \\ 0 \end{pmatrix} = -\omega^2 \vec{\mathbf{r}}(t),$$

d. h., der Beschleunigungsvektor ist antiparallel zum Radiusvektor und damit zum Normalenvektor und zeigt zum Mittelpunkt hin. Daher verschwindet die Tangentialkomponente,

$$\vec{\mathbf{a}}_{tan}(t) = 0$$
,

und die Normalkomponente ist

$$a_{\text{norm}}(t) = r\omega^2 = \frac{v^2}{r},$$

wobei $v = r\omega$ eingesetzt wurde.

5. Krümmung der Bahnkurve und Beschleunigung

Die Normalkomponente des Beschleunigungsvektors steht mit der Krümmung der Bahnkurve in Zusammenhang.

Krümmungsradius, *R*, in einem Punkt einer Bahnkurve, der Radius eines Kreises, der die gleiche Krümmung hat wie die Kurve an diesem Punkt. Ein solcher Kreis schmiegt sich in diesem Punkt an die Bahnkurve.

▲ Die Normalkomponente des Beschleunigungsvektors ist

$$a_{\text{norm}} = \frac{v^2}{R}$$

mit dem Krümmungsradius R der Bahnkurve. Sie zeigt zum Mittelpunkt des Krümmungskreises.

- Eine Gerade hat den Krümmungsradius $R=\infty$. Die Normalbeschleunigung verschwindet für die Bewegung auf einer Geraden.
- Bei einer ungleichförmigen Kreisbewegung (**Abb. 1.32**) ist außer der Normalbeschleunigung (**Zentripetalbeschleunigung**) a_r auch die Tangentialbeschleunigung a_{φ} von Null verschieden:

$$\vec{\mathbf{v}}(t) = r \, \dot{\varphi} \, \vec{\mathbf{e}}_{\varphi} \,, \qquad \vec{\mathbf{a}}(t) = a_r \, \vec{\mathbf{e}}_r + a_{\varphi} \, \vec{\mathbf{e}}_{\varphi} \,,$$

$$a_r = -r \, \dot{\varphi}^2 = -r \, \omega^2 \,, \qquad a_{\varphi} = r \, \ddot{\varphi} = r \, \dot{\omega} \,.$$

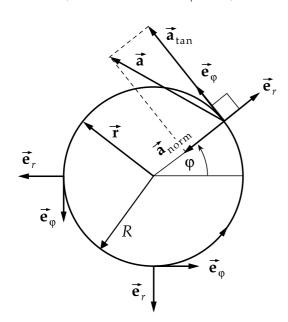


Abbildung 1.32: Ungleichförmige Kreisbewegung, $\vec{\mathbf{e}}_{tan} = \vec{\mathbf{e}}_{\varphi}$, $\vec{\mathbf{e}}_{norm} = \vec{\mathbf{e}}_r$

- 6. Orts-, Geschwindigkeits- und Beschleunigungsvektor in verschiedenen Koordinatensystemen
- a) Kartesische Koordinaten

$$\vec{\mathbf{r}}(t) = x(t)\vec{\mathbf{e}}_x + y(t)\vec{\mathbf{e}}_y + z(t)\vec{\mathbf{e}}_z$$

$$\vec{\mathbf{v}}(t) = \dot{x}(t) \vec{\mathbf{e}}_x + \dot{y}(t) \vec{\mathbf{e}}_y + \dot{z}(t) \vec{\mathbf{e}}_z$$

$$\vec{\mathbf{a}}(t) = \ddot{x}(t)\vec{\mathbf{e}}_x + \ddot{y}(t)\vec{\mathbf{e}}_y + \ddot{z}(t)\vec{\mathbf{e}}_z$$

b) Polarkoordinaten

$$\vec{\mathbf{r}}(t) = r \, \vec{\mathbf{e}}_r$$

$$\dot{ec{\mathbf{e}}}_r = \dot{arphi} \, ec{\mathbf{e}}_{arphi} \, , \qquad \dot{ec{\mathbf{e}}}_{arphi} = -\dot{arphi} \, ec{\mathbf{e}}_r$$

$$\vec{\mathbf{v}}(t) = \dot{r}\,\vec{\mathbf{e}}_r + r\,\dot{\boldsymbol{\varphi}}\,\vec{\mathbf{e}}_{\boldsymbol{\varphi}}$$

$$\vec{\mathbf{a}}(t) = (\ddot{r} - r\,\dot{\varphi}^2)\,\vec{\mathbf{e}}_r + (r\,\ddot{\varphi} + 2\,\dot{r}\,\dot{\varphi})\,\vec{\mathbf{e}}_{\varphi}$$

c) Kugelkoordinaten

$$\vec{\mathbf{r}}(t) = r \, \vec{\mathbf{e}}_r$$

$$\dot{\vec{\mathbf{e}}}_r = \dot{\vartheta} \, \vec{\mathbf{e}}_\vartheta + \sin \vartheta \, \dot{\varphi} \, \vec{\mathbf{e}}_\vartheta \,, \quad \dot{\vec{\mathbf{e}}}_\vartheta = \dot{\varphi} \, \cos \vartheta \, \vec{\mathbf{e}}_\varphi - \dot{\vartheta} \, \vec{\mathbf{e}}_r \,, \quad \dot{\vec{\mathbf{e}}}_\varphi = -\dot{\varphi} \, \cos \vartheta \, \vec{\mathbf{e}}_\vartheta - \sin \vartheta \, \dot{\varphi} \, \vec{\mathbf{e}}_r \,$$

$$\vec{\mathbf{v}}(t) = \dot{r}\,\vec{\mathbf{e}}_r + r\,\dot{\vartheta}\,\vec{\mathbf{e}}_\vartheta + r\,\sin\vartheta\,\dot{\varphi}\,\vec{\mathbf{e}}_\varphi$$

$$\vec{\mathbf{a}}(t) = (\ddot{r} - r \dot{\vartheta}^2 - r \sin^2 \vartheta \dot{\varphi}^2) \vec{\mathbf{e}}_r + (r \ddot{\vartheta} + 2 \dot{r} \dot{\vartheta} - r \sin \vartheta \cos \vartheta \dot{\varphi}^2) \vec{\mathbf{e}}_\vartheta$$
$$+ (r \sin \vartheta \ddot{\varphi} + 2 \sin \vartheta \dot{r} \dot{\varphi} + 2 r \cos \vartheta \dot{\vartheta} \dot{\varphi}) \vec{\mathbf{e}}_\varphi$$

d) Zylinderkoordinaten

$$\vec{\mathbf{r}}(t) = \rho \, \vec{\mathbf{e}}_{\rho} + z \, \vec{\mathbf{e}}_{z}$$

$$\dot{\vec{\mathbf{e}}}_{\rho} = \dot{\phi} \, \vec{\mathbf{e}}_{\phi} \,, \quad \dot{\vec{\mathbf{e}}}_{\phi} = -\dot{\phi} \, \vec{\mathbf{e}}_{\rho} \,, \quad \dot{\vec{\mathbf{e}}}_{z} = 0$$

$$\vec{\mathbf{v}}(t) = \dot{\rho} \, \vec{\mathbf{e}}_{\rho} + \rho \, \dot{\phi} \, \vec{\mathbf{e}}_{\phi} + \dot{z} \, \vec{\mathbf{e}}_{z}$$

$$\vec{\mathbf{a}}(t) = (\ddot{\rho} - \rho \, \dot{\phi}^{2}) \vec{\mathbf{e}}_{\rho} + (\rho \, \ddot{\phi} + 2 \, \dot{\rho} \, \dot{\phi}) \vec{\mathbf{e}}_{\phi} + \ddot{z} \, \vec{\mathbf{e}}_{z}$$

1.3.3 Freier Fall und Wurf

Freier Fall, **Wurf**, bezeichnen ein- bzw. zweidimensionale Bewegungen unter dem Einfluss der Erdanziehung. Eine solche Bewegung wird beschrieben durch die Bahnkurve

$$\vec{\mathbf{r}}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

und den Geschwindigkeitsvektor

$$\dot{\vec{\mathbf{r}}}(t) = \begin{pmatrix} v_x(t) \\ v_y(t) \end{pmatrix} .$$

Dabei bedeutet die x-Koordinate den waagerechten Abstand vom Ursprung, die y-Koordinate die Höhe. Der Beschleunigungsvektor ist in jedem Fall der Vektor der Fallbeschleunigung $\vec{\mathbf{g}}$,

$$\ddot{\vec{\mathbf{r}}}(t) = \vec{\mathbf{g}} = \begin{pmatrix} 0 \\ -g \end{pmatrix}$$
.

Die Annahme einer konstanten Beschleunigung ist nur gerechtfertigt, solange die Luftreibung vernachlässigbar und wenn die Fallhöhe klein gegen den Abstand vom Erdmittelpunkt ist, so dass sich die Gravitationsbeschleunigung während der Bewegung nur vernachlässigbar wenig verändert.

1. Freier Fall

Der Körper befinde sich anfangs in Ruhe und bewege sich unter dem Einfluss der Gravitation aus einer Höhe h_0 nach unten. Seine Bewegung wird (bei Vernachlässigung der Luftreibung oder im luftleeren Raum) beschrieben durch den Ort auf der y-Achse (momentane Höhe) y(t) und die **Fallgeschwindigkeit** $v(t) = v_y(t)$ bei einer Anfangshöhe h_0 :

$$x(t) = 0$$
, $y(t) = h_0 - \frac{gt^2}{2}$,
 $v_x(t) = 0$, $v_y(t) = -gt$.

Falldauer t_F und Aufprallgeschwindigkeit $v(t_F)$ sind

$$t_F = \sqrt{\frac{2h_0}{g}}, \qquad v(t_F) = -\sqrt{2h_0g}.$$

2. Senkrechter Wurf nach oben

Der Körper befindet sich anfangs in der Höhe h_0 und erhält eine Geschwindigkeit v_0 nach oben:

$$x(t) = 0$$
, $y(t) = h_0 + v_0 t - \frac{gt^2}{2}$,
 $v_x(t) = 0$, $v_y(t) = v_0 - gt$.

Die maximale Steighöhe H wird zum Zeitpunkt T_H erreicht, wenn die Geschwindigkeit $v_y(t)$ Null geworden ist (**Abb. 1.33**):

$$H = h_0 + rac{v_0^2}{2g}\,, \qquad T_{
m H} = rac{v_0}{g}\,.$$