Ultra Low-Power Biomedical Signal Processing (eBook)

An Analog Wavelet Filter Approach for Pacemakers
eBook Download: PDF
2009 | 2009
X, 215 Seiten
Springer Netherlands (Verlag)
978-1-4020-9073-8 (ISBN)

Lese- und Medienproben

Ultra Low-Power Biomedical Signal Processing -  Sandro Augusto Pavlik Haddad,  Wouter A. Serdijn
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection.

In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.


Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection.In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.

Foreword 6
Contents 8
Introduction 12
Biomedical signal processing 12
Biomedical applications of the wavelet transform 13
Cardiac signal analysis 14
Analog versus digital circuitry - a power consumption challenge for biomedical front-ends 15
Power consumption in analog sense amplifiers 16
Power per pole for analog filters 17
Power consumption in digital sense amplifiers 17
Power consumption in A/D converters 17
Power consumption in digital filters 19
Objective and scope of this book 20
Outline 21
References 22
The Evolution of Pacemakers: An Electronics Perspective 24
The heart 25
Excitation and conduction system 26
Cardiac signals 27
Surface electrocardiogram 27
Intracardiac electrogram (IECG) 28
Cardiac diseases - arrythmias 28
The history and development of cardiac pacing 29
What is an artificial pacemaker? 29
Hyman's pacemaker 30
Dawn of a modern era - implantable pacemakers 30
Demand pacemaker 33
Dual-chamber pacemaker 36
Rate-responsive pacemaker 37
New features in modern pacemakers 37
Morphological analysis 39
Summary and conclusions 40
References 40
Wavelet versus Fourier Analysis 43
Introduction 43
Fourier transform 43
Windowing function 44
Wavelet transform 45
Continuous-time wavelet bases 49
Complex continuous-time wavelet bases 51
Signal processing with the wavelet transform 52
Singularity detection - wavelet zoom 52
Modulus maxima 53
Lipschitz exponent - regularity 53
Wavelet vanishing moments 55
Regularity measurements with wavelets 55
Denoising 57
Compression 57
Low-power analog wavelet filter design 58
Conclusions 59
References 59
Analog Wavelet Filters: The Need for Approximation 61
Introduction 61
Complex first order filters 61
Padé approximation in the Laplace domain 66
Oscillatory wavelet bases approximation 70
L2 approximation 73
Other approaches to wavelet base approximation 76
Bessel-Thomson filters - a quasi-Gaussian impulse response 76
Filanovsky's filter approach Filanovsky 77
Fourier-series method 78
Discussion 81
Conclusions 83
References 83
Optimal State Space Descriptions 85
State space description 85
Dynamic range 87
Dynamic range optimization 88
Sparsity 90
Orthogonal transformations 90
Hessenberg decomposition 90
Schur decomposition 91
Canonical form representations 92
Biquad structure 94
Diagonal controllability gramian - an orthonormal ladder structure 95
Sparsity versus dynamic range comparison 98
New Sparsity Figure-of-Merit (SFOM) 99
Sensitivity 100
New Dynamic Range-Sparsity-Sensitivity (DRSS) figure-of-merit 103
Conclusion 104
References 104
Ultra Low-Power Integrator Designs 105
Gm-C filters 105
nA/V CMOS triode transconductor 106
A pA/V Delta-Gm (Delta-Gm) transconductor 109
Translinear (log-domain) filters 111
Static and dynamic translinear principle 111
Log-domain integrator 113
Class-A log-domain filter design examples 115
Bipolar multiple-input log-domain integrator 115
CMOS multiple-input log-domain integrator 116
High-frequency log-domain integrator in CMOS technology 117
Voltage follower 118
Simulation results 120
Low-power class-AB sinh integrators 121
A state-space formulation for class-AB log-domain integrators 121
Class-AB sinh integrator based on state-space formulation using single transistors 123
Companding sinh integrator 125
Circuit design 126
Ultra low-power class-AB sinh integrator 128
CMOS integrator implementation 130
Conclusions 137
Discussion 137
Conclusions 138
References 138
Ultra Low-Power Biomedical System Designs 141
Dynamic translinear cardiac sense amplifier for pacemakers 142
Differential voltage to single-ended current converter 143
Bandpass filter 144
Absolute value and RMS-DC converter circuits 146
Detection (Sign function) circuit 147
QRS-complex wavelet detection using CFOS 150
Filtering stage - CFOS wavelet filter 151
Decision stage - absolute value and peak detector circuits 153
Measurement results 154
Wavelet filter designs 159
Gaussian filters 159
Optimized Padé implementation using DTL circuits ISCAS2004Haddad 160
L2 approximation employing CMOS triode transconductors 164
Complex wavelet filter implementation 166
Circuit design 168
Morlet wavelet filter 170
Circuit design 173
Measurement results of the Morlet wavelet filter 176
Conclusions 179
References 181
Conclusions and Future Research 183
Future research 185
Biomedical applications of wavelets 186
Ultra Wideband Applications 187
High-Performance Analog Delays 188
Bessel-Thomson approximation 188
Padé approximation 189
Comparison of Bessel-Thomson and Padé approximation delay filters 192
Gaussian time-domain impulse-response method 192
Model Reduction - The Balanced Truncation Method 197
Reduced model and optimal dynamic transformations comparison 200
Switched-Capacitor Wavelet Filters 201
Non-inverting and inverting SC integrators 203
Ultra-Wideband Circuit Designs 207
Impulse generator for pulse position modulation 207
A delay filter for an UWB front-end 209
A FCC compliant pulse generator for UWB communications 211
Summary 213
About the Authors 217
Index 219

Erscheint lt. Verlag 26.5.2009
Reihe/Serie Analog Circuits and Signal Processing
Zusatzinfo X, 215 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Elektrotechnik / Energietechnik
Technik Medizintechnik
Technik Nachrichtentechnik
Schlagworte analog signal processing • biomedical • Biomedical Application • Biomedical Applications • Biomedical Signal Processing • Electronics • Integrated Circuits • Low Power • Signal Processing • wavelets (WT)
ISBN-10 1-4020-9073-0 / 1402090730
ISBN-13 978-1-4020-9073-8 / 9781402090738
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich