Advanced Mathematical Tools for Automatic Control Engineers: Volume 2 -  Alexander S. Poznyak

Advanced Mathematical Tools for Automatic Control Engineers: Volume 2 (eBook)

Stochastic Systems
eBook Download: PDF | EPUB
2009 | 1. Auflage
567 Seiten
Elsevier Science (Verlag)
978-0-08-091403-9 (ISBN)
170,00 € inkl. MwSt
Systemvoraussetzungen
168,54 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The second volume of this work continues the and approach of the first volume, providing mathematical tools for the control engineer and examining such topics as random variables and sequences, iterative logarithmic and large number laws, differential equations, stochastic measurements and optimization, discrete martingales and probability space. It includes proofs of all theorems and contains many examples with solutions.

It is written for researchers, engineers and advanced students who wish to increase their familiarity with different topics of modern and classical mathematics related to system and automatic control theories. It also has applications to game theory, machine learning and intelligent systems.

* Provides comprehensive theory of matrices, real, complex and functional analysis
* Provides practical examples of modern optimization methods that can be effectively used in variety of real-world applications
* Contains worked proofs of all theorems and propositions presented
Advanced Mathematical Tools for Automatic Control Engineers, Volume 2: Stochastic Techniques provides comprehensive discussions on statistical tools for control engineers. The book is divided into four main parts. Part I discusses the fundamentals of probability theory, covering probability spaces, random variables, mathematical expectation, inequalities, and characteristic functions. Part II addresses discrete time processes, including the concepts of random sequences, martingales, and limit theorems. Part III covers continuous time stochastic processes, namely Markov processes, stochastic integrals, and stochastic differential equations. Part IV presents applications of stochastic techniques for dynamic models and filtering, prediction, and smoothing problems. It also discusses the stochastic approximation method and the robust stochastic maximum principle. Provides comprehensive theory of matrices, real, complex and functional analysis Provides practical examples of modern optimization methods that can be effectively used in variety of real-world applications Contains worked proofs of all theorems and propositions presented

Front cover 1
Half title page 2
Dedication 3
Title page 4
Copyright page 5
Contents 6
Preface 16
Notations and Symbols 22
List of Figures 28
List of Tables 30
PART I: Basics of Probability 31
Chapter 1. Probability Space 33
1.1. Set operations, algebras and sigma-algebras 33
1.2. Measurable and probability spaces 39
1.3. Borel algebra and probability measures 45
1.4. Independence and conditional probability 56
Chapter 2. Random Variables 63
2.1. Measurable functions and random variables 63
2.2. Transformation of distributions 67
2.3. Continuous random variables 72
Chapter 3. Mathematical Expectation 77
3.1. Definition of mathematical expectation 77
3.2. Calculation of mathematical expectation 82
3.3. Covariance, correlation and independence 90
Chapter 4. Basic Probabilistic Inequalities 93
4.1. Moment-type inequalities 93
4.2. Probability inequalities for maxima of partial sums 102
4.3. Inequalities between moments of sums and summands 110
Chapter 5. Characteristic Functions 113
5.1. Definitions and examples 113
5.2. Basic properties of characteristic functions 118
5.3. Uniqueness and inversion 124
PART II: Discrete Time Processes 131
Chapter 6. Random Sequences 133
6.1. Random process in discrete and continuous time 133
6.2. Infinitely often events 134
6.3. Properties of Lebesgue integral with probabilistic measure 140
6.4. Convergence 147
Chapter 7. Martingales 163
7.1. Conditional expectation relative to a sigma-algebra 163
7.2. Martingales and related concepts 168
7.3. Main martingale inequalities 186
7.4. Convergence 191
Chapter 8. Limit Theorems as Invariant Laws 205
8.1. Characteristics of dependence 206
8.2. Law of large numbers 219
8.3. Central limit theorem 239
8.4. Logarithmic iterative law 255
PART III: Continuous Time Processes 267
Chapter 9. Basic Properties of Continuous Time Processes 269
9.1. Main definitions 269
9.2. Second-order processes 271
9.3. Processes with orthogonal and independent increments 274
Chapter 10. Markov Processes 293
10.1. Definition of Markov property 293
10.2. Chapman--Kolmogorov equation and transition function 297
10.3. Diffusion processes 301
10.4. Markov chains 307
Chapter 11. Stochastic Integrals 317
11.1. Time-integral of a sample-path 318
11.2. .-stochastic integrals 322
11.3. The Itô stochastic integral 329
11.4. The Stratonovich stochastic integral 347
Chapter 12. Stochastic Differential Equations 353
12.1. Solution as a stochastic process 353
12.2. Solutions as diffusion processes 368
12.3. Reducing by change of variables 372
12.4. Linear stochastic differential equations 376
PART IV: Applications 385
Chapter 13. Parametric Identification 387
13.1. Introduction 387
13.2. Some models of dynamic processes 389
13.3. LSM estimating 393
13.4. Convergence analysis 397
13.5. Information bounds for identification methods 411
13.6. Efficient estimates 419
13.7. Robustification of identification procedures 436
Chapter 14. Filtering, Prediction and Smoothing 447
14.1. Estimation of random vectors 447
14.2. State-estimating of linear discrete-time processes 452
14.3. State-estimating of linear continuous-time processes 457
Chapter 15. Stochastic Approximation 469
15.1. Outline of chapter 469
15.2. Stochastic nonlinear regression 470
15.3. Stochastic optimization 492
Chapter 16. Robust Stochastic Control 501
16.1. Introduction 501
16.2. Problem setting 502
16.3. Robust stochastic maximum principle 507
16.4. Proof of Theorem Th-RSMP 510
16.5. Discussion 522
16.6. Finite uncertainty set 525
16.7. Min-Max LQ-control 538
16.8. Conclusion 557
Bibliography 559
Index 565

Preface


This book contains four parts:

 Basics of Probability

 Discrete Time Processes

 Continuous Time Processes

 Applications.

The first part concerns the basics of Probability Theory which, in fact, is the probability space. The key idea behind probability space is the stabilization of the relative frequencies when one performs ‘independent’ repetition of a random experiment and records whether each time ‘event’, say A, occurs ornot. Define the characteristicfunction ofevent A during trial t = 1, 2,… by χ (At), namely,

At:=1ifAoccurs,i.e.,At=A0ifnot

  (1)

Denoted by

nA:=1n∑t=1nχAt

  (2)

the relative frequency of event A after the first n trials, because of the dawn of history one can observe the stabilization of the relative frequencies; that is, it seems natural that as n → ∞

rn (A) converges to some real number called the probability of A.

Although games of chance have been performed for thousands of years, probability theory, as a science, originated in the middle of the 17th century with Pascal (1623—1662), Fermat (1601—1655) and Huygens (1629—1695). The real history of probability theory began with the works of James Bernoulli (1654—1705) and De Moivre (1667—1754). Bernoulli was probably the first to realize the importance of consideration of infinite sequences of random trials and made a clear distinction between the probability of an event and the frequency of its realization. In 1812 there appeared Laplace’s (1749—1827) great treatise containing the analytical theory of probability with application to the analysis of observation errors. Then limit theorems were studied by Poisson (1781—1840) and Gauss (1777—1855).

The next important period in the development of probability theory is associated with the names of P.L. Chebyshev (1857—1894), A.A. Markov (1856—1922) and A.M. Lyapunov (1857—1918), who developed effective methods for proving limit theorems for sums of independent but arbitrarily distributed random variables. Before Chebyshev the main interest had been in the calculation of the probabilities of random events. He, probably, was the first to understand clearly and exploit the full strength of the concepts of random variables. The number of Chebyshev’s publications on probability theory is not large — four in all — but it would be hard to overestimate their role and in the development of the classical Russian school of that subject.

The modern period in the development of probability theory began with its axiomatization due to the publications of S.N. Bernstein (1880—1968), R. von Mises (1883—1953) and E. Borel (1871—1956). But the first mathematically rigorous treatment of probability theory came only in the 1930s by the Russian mathematician A.N. Kolmogorov (1903—1987) in his seminal paper (Kolmogorov, 1933). His first observation was that a number of rules that hold for relative frequencies rn (A) should also hold for probabilities. This immediately raises the question: which is the minimal set of such rules? According to Kolmogorov, the answer is based on several axiomatic concepts. These fundamental concepts are:

(1) α-algebra

(2) probability measure

(3) probability space

(4) distribution function.

In this volume we will discuss each of these principal notions in details.

The second part deals with discrete time processes, or, more exactly, random sequences where the main role is played by Martingale Theory, which takes a central place in Discrete-Time Stochastic Process Theory because of the asymptotic properties of martingales providing a key prototype of probabilistic behavior which is of wide applicability. The first appearance of a martingale as a mathematical term was due to J. Ville (1939). The major breakthrough was associated with the classic book Stochastic Processes by J. Doob (1953). Other recent books are J. Neveu (1975), R. Liptser and A. Shiryaev (1989) and D. Williams (1991). The martingale is a sequence {ξn, n}n ≥ 1 of random variables ξn associated with a corresponding prehistory (α-algebra) n − 1 such that the conditional mathematical expectation of ξn under fixed n − 1 is equal to ξn–1 with probability 1, that is,

ξn/Fn−1a.s.¯¯ξn−1

Martingales are probably the most inventive and generalized of sums of independent random variables with zero-mean. Indeed, any random variable ξn (maybe, dependent) can be expressed as a sum of ‘martingale-differences’

n:=E{ξn/Fk}−E{ξn/Fk−1},E{ξn/F0}=0,k=1,…,n

because of the representation

n=ξn−Eξn/Fn−1+Eξn/Fn−1−Eξn/Fn−2+…+Eξn/F1−Eξn/F0=∑k=1nΔk

In some sense martingales occupy the intermediate place between independent and dependent sequences. The independence assumption has proved inadequate for handling contemporary developments in many fields.

Then, based on such considerations, there are presented and discussed in detail the three most important probabilistic laws: the Weak Law of Large Numbers (LLN) and its strong version known as the Strong Law of Large Numbers (SLLN), the Central Limit Theorem (CLT), and, finally, the Law ofthe Iterated Logarithm (LIL). All of them may be interpreted as invariant principles or invariant laws because of the independence of the formulated results of the distribution of random variables forming considered random sequences.

The third part discusses Continuous-Time Processes basically governed by stochastic differential equations. The notion of the mean-square continuity property is introduced along with its relation with some properties of the corresponding auto-covariance matrix function. Then processes with orthogonal and independent Increments are introduced, and, as a particular case, the Wiener process or Brownian motion is considered. A detailed analysis and discussion of an invariance principle and LIL for Brownian motion are presented.

The so-called Markov Processes are then introduced. A stochastic dynamic system satisfies the Markov property if the probable (future) state of the system is independent of the (past) behavior of the system. The relation of such systems to diffusion processes is deeply analyzed. The ergodicity property of such systems is also discussed.

Next, the most important constructions of stochastic integrals are studied: namely

 a time-integral of a sample path of a second order (s.o.) stochastic process;

 the so-called Wiener integral of a deterministic function with respect to a stationary orthogonal increment random process such that this integral is associated with the Lebesgue integral, it is usually referred to as a stochastic integral with respect to an ‘orthogonal random measure’ ;

 the so-called Itô integral of a random function with respect to a stationary orthogonal increment random process;

 and, finally, the so-called Stratonovich integral of a random function with respect to an s.o. stationary orthogonal increment random process where the ‘summation’ on the right-hand side is taken in a special sense.

All of these different types of stochastic integral are required for the mathematically rigorous definition of a solution of a stochastic differential equation. We discuss the class of the so-called Stochastic Differential Equation, introduced by K. Itô, whose basic theory was developed independently by Itô and I. Gihman during 1940s. There the Itô-type integral calculus is applied. The principal motivation for choosing the Itô approach (as opposed to the Stratonovich calculus as another very popular interpretation of stochastic integration) is that the Itô method extends to a broader class of equations and transformation the probability law of the Wiener process in a more natural way. This approach implements the so-called diffusion approximation which arises from random difference equation models and has wide application to control problems in engineering sciences, motivated by the need for more sophisticated models which spurred further work on...

Erscheint lt. Verlag 13.8.2009
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-091403-9 / 0080914039
ISBN-13 978-0-08-091403-9 / 9780080914039
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Fachbuchverlag
34,99