Metamaterials (eBook)

Theory, Design, and Applications
eBook Download: PDF
2009 | 2010
XXIII, 367 Seiten
Springer US (Verlag)
978-1-4419-0573-4 (ISBN)

Lese- und Medienproben

Metamaterials -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.


Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.

Preface 6
Acknowledgments 9
Contents 10
List of Contributors 16
1 Introduction to Metamaterials 21
Tie Jun Cui, Ruopeng Liu and David R. Smith 21
1.1 What Is Metamaterial? 21
1.2 From Left-Handed Material to Invisible Cloak: A Brief History 24
1.3 Optical Transformation and Control of Electromagnetic Waves 25
1.4 Homogenization of Artificial Particles and Effective Medium Theory 26
1.4.1 General Description 26
1.4.2 A TL-Metamaterial Example 28
1.5 Rapid Design of Metamaterials 34
1.6 Resonant and Non-resonant Metamaterials 34
1.7 Applications of Metamaterials 36
1.8 Computational Electromagnetics: A New Aspect of Metamaterials 36
References 37
2 Optical Transformation Theory 40
Wei Xiang Jiang and Tie Jun Cui 40
2.1 Introduction 40
2.2 Optical Transformation Medium 41
2.3 Transformation Devices 44
2.3.1 Invisibility Cloaks 44
2.3.2 EM Concentrators 52
2.3.3 EM-Field and Polarization Rotators 54
2.3.4 Wave-Shape Transformers 55
2.3.5 EM-Wave Bending 56
2.3.6 More Invisibility Devices 58
2.3.7 Other Optical-Transformation Devices 60
2.4 Summary 62
References 63
3 General Theory on Artificial Metamaterials 68
Ruopeng Liu, Tie Jun Cui and David R. Smith 68
3.1 Local Field Response and Spatial Dispersion Effect on Metamaterials 69
3.2 Spatial Dispersion Model on Artificial Metamaterials 72
3.3 Explanation of the Behavior on Metamaterial Structures 74
3.4 Verification of the Spatial Dispersion Model 75
References 77
4 Rapid Design for Metamaterials 79
Jessie Y. Chin, Ruopeng Liu, Tie Jun Cui and David R. Smith 79
4.1 Introduction 80
4.2 The Algorithm of Rapid Design for Metamaterials 81
4.2.1 Schematic Description of Rapid Design 81
4.2.2 Particle Level Design 82
4.3 Examples 93
4.3.1 Gradient Index Lens by ELC 93
4.3.2 Gradient-Index Metamaterials Designed with Three Variables 97
4.3.3 Reduced Parameter Invisible Cloak 97
4.3.4 Metamaterial Polarizer 99
4.4 Summary 100
References 101
5 Broadband and Low-Loss Non-Resonant Metamaterials 104
Ruopeng Liu, Qiang Cheng, Tie Jun Cui and David R. Smith 104
5.1 Analysis of the Metamaterial Structure 104
5.2 Demonstration of Broadband Inhomogeneous Metamaterials 110
References 113
6 Experiment on Cloaking Devices 115
Ruopeng Liu, Jessie Y. Chin, Chunlin Ji, Tie Jun Cuiand David R. Smith 115
6.1 Invisibility Cloak Design in Free Space 115
6.2 Transformation Optics Approach to Theoretical Design of Broadband Ground Plane Cloak 119
6.3 Metamaterial Structure Design to Implement Ground-PlaneCloak 122
6.4 Experimental Measurement Platform 124
6.5 Field Measurement on the Ground-Plane Cloak 126
6.6 Power and Standing Wave Measurement on the Ground-Plane Cloak 128
6.7 Conclusion 130
References 130
7 Finite-Difference Time-Domain Modeling of Electromagnetic Cloaks 131
Christos Argyropoulos, Yan Zhao, Efthymios Kallos and Yang Hao 131
7.1 Introduction 132
7.2 FDTD Modeling of Two-Dimensional Lossy Cylindrical Cloaks 133
7.2.1 Derivation of the Method 133
7.2.2 Discussion and Stability Analysis 140
7.2.3 Numerical Results 142
7.3 Parallel Dispersive FDTD Modeling of Three-Dimensional Spherical Cloaks 147
7.4 FDTD Modeling of the Ground-Plane Cloak 160
7.5 Conclusion 166
References 167
8 Compensated Anisotropic Metamaterials: Manipulating Sub-wavelength Images 170
Yijun Feng 170
8.1 Introduction 170
8.2 Compensated Anisotropic Metamaterial Bilayer 172
8.2.1 Anisotropic Metamaterials 173
8.2.2 Compensated Bilayer of AMMs 174
8.3 Sub-wavelength Imaging by Compensated Anisotropic Metamaterial Bilayer 176
8.3.1 Compensated AMM Bilayer Lens 176
8.3.2 Loss and Retardation Effects 178
8.4 Compensated Anisotropic Metamaterial Prisms: Manipulating Sub-wavelength Images 180
8.4.1 General Compensated Bilayer Structure 181
8.4.2 Compensated AMM Prism Structures 182
8.5 Realizing Compensated AMM Bilayer Lens by Transmission-Line Metamaterials 187
8.5.1 Transmission Line Models of AMMs 187
8.5.2 Realization of Compensated Bilayer Lens Through TL Metamaterials 189
8.5.3 Simulation and Measurement of the TL Bilayer Lens 191
8.6 Summary 194
References 195
9 The Dynamical Study of the Metamaterial Systems 197
Xunya Jiang, Zheng Liu, Zixian Liang, Peijun Yao, Xulin Lin and Huanyang Chen 197
9.1 Introduction 197
9.2 The Temporal Coherence Gain of the Negative-Index Superlens Image 200
9.3 The Physical Picture and the Essential Elements of the Dynamical Process for Dispersive Cloaking Structures 206
9.4 Limitation of the Electromagnetic Cloak with DispersiveMaterial 212
9.5 Expanding the Working Frequency Range of Cloak 218
9.6 Summary 226
References 226
10 Photonic Metamaterials Based on Fractal Geometry 229
Xueqin Huang, Shiyi Xiao, Lei Zhou, Weijia Wen, C. T. Chan and Ping Sheng 229
10.1 Introduction 229
10.2 Electric Metamaterials Based on Fractal Geometry 232
10.2.1 Characterization and Modeling of a Metallic FractalPlate 232
10.2.2 Mimicking Photonic Bandgap Materials 236
10.2.3 Subwavelength Reflectivity 237
10.3 Magnetic Metamaterials Based on Fractal Geometry 239
10.3.1 Characterizations and Modeling of the Fractal Magnetic Metamaterial 239
10.3.2 A Typical Application of the Fractal Magnetic Metamaterial 243
10.4 Plasmonic Metamaterials Based on Fractal Geometry 243
10.4.1 SPP Band Structures of Fractal Plasmonic Metamaterials 243
10.4.2 Extraordinary Optical Transmissions Through Fractal Plasmonic Metamaterials 246
10.4.3 Super Imaging with a Fractal Plasmonic Metamaterial as a Lens 250
10.5 Other Applications of Fractal Photonic Metamaterials 252
10.5.1 Perfect EM Wave Tunneling Through Negative Permittivity Medium 253
10.5.2 Manipulating Light Polarizations with Anisotropic Magnetic Metamaterials 255
10.6 Conclusions 257
References 257
11 Magnetic Plasmon Modes Introduced by the Coupling Effect in Metamaterials 260
H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu and X. Zhang 260
11.1 Introduction 261
11.2 Hybrid Magnetic Plasmon Modes in Two Coupled Magnetic Resonators 264
11.3 Magnetic Plasmon Modes in One-Dimensional Chain of Resonators 269
11.4 Magnetic Plasmon Modes in Two-Dimensional Metamaterials 275
11.5 Outlook 278
References 279
12 Enhancing Light Coupling with Plasmonic Optical Antennas 283
Jun Xu, Anil Kumar, Pratik Chaturvedi, Keng H. Hsu and Nicholas X. Fang 283
12.1 Introduction 283
12.2 Fabrication Methods 287
12.2.1 Electron Beam Lithography 287
12.2.2 Solid-State Superionic Stamping 288
12.3 Measurement and Analysis 289
12.3.1 Optical Scattering by Nanoantennas 290
12.3.2 Cathodoluminescence Spectroscopy 295
12.4 Application 299
12.4.1 Surface-Enhanced Raman Spectroscopy 299
12.5 Summary 302
References 302
13 Wideband and Low-Loss Metamaterialsfor Microwave and RF Applications: Fast Algorithm and Antenna Design 304
Le-Wei Li, Ya-Nan Li and Li Hu 304
13.1 Adaptive Integral Method (AIM) for Left-Handed Material (LHM) Simulation 305
13.1.1 Hybrid Volume--Surface Integral Equation (VSIE)and MoM for SRRs 305
13.1.2 Formulations for AIM 307
13.1.3 Numerical Results of AIM Simulation 309
13.2 ASED-AIM for LHM Numerical Simulations 311
13.2.1 Formulations for Hybrid VSIE and ASED-AIM 312
13.2.2 Computational Complexity and Memory Requirement for the ASED-AIM 315
13.2.3 Numerical Results of the ASED-AIM 316
13.3 A Novel Design of Wideband LHM Antennafor Microwave/RF Applications 322
13.3.1 Microstrip Patch Antenna and LHM Applications 322
13.3.2 A Novel Design of Wideband LH Antenna 322
13.3.3 Simulation and Measurement Results 324
References 328
14 Experiments and Applications of Metamaterials in Microwave Regime 331
Qiang Cheng, X. M. Yang, H. F. Ma, J. Y. Chin, T. J. Cui, R. Liu and D. R. Smith 331
14.1 Introduction 331
14.2 Gradient Index Circuit by Waveguided Metamaterials 332
14.3 Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies 337
14.4 Partial Focusing by Indefinite Complementary Metamaterials 342
14.5 A Metamaterial Luneberg Lens Antenna 348
14.6 Metamaterial Polarizers by Electric-Field-Coupled Resonators 351
14.7 An Efficient Broadband Metamaterial Wave Retarder 357
References 363
15 Left-handed Transmission Line of Low Pass and Its Applications 366
Xin Hu and Sailing He 366
15.1 Introduction 366
15.2 Theory 367
15.3 Application: A 180 Hybrid Ring (Rat-Race) 371
15.4 Conclusion 373
References 373
Index 374

Erscheint lt. Verlag 30.10.2009
Zusatzinfo XXIII, 367 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte artificial metamaterials • beam splitters • Design • EM concentrators • Imaging • invisible cloaks • left-handed materials (LHM) • magnetic plasmon effects • Metamaterial • metamaterials • microwave • microwave and RF applications • Modeling • negative index materials (NIM) • optical transformation theory • Simulation • Transmission
ISBN-10 1-4419-0573-1 / 1441905731
ISBN-13 978-1-4419-0573-4 / 9781441905734
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 24,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Michael Schulz; Beatrix M. Schulz; Reinhold Walser …

eBook Download (2022)
Wiley-VCH (Verlag)
48,99
Theoretische Physik II

von Michael Schulz; Beatrix M. Schulz; Reinhold Walser …

eBook Download (2022)
Wiley-VCH (Verlag)
48,99