Materials Science with Ion Beams (eBook)

Harry Bernas (Herausgeber)

eBook Download: PDF
2009 | 2010
XV, 376 Seiten
Springer Berlin (Verlag)
978-3-540-88789-8 (ISBN)

Lese- und Medienproben

Materials Science with Ion Beams -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Materials science is the prime example of an interdisciplinary science. It - compasses the ?elds of physics, chemistry, material science, electrical en- neering, chemical engineering and other disciplines. Success has been o- standing. World-class accomplishments in materials have been recognized by NobelprizesinPhysicsandChemistryandgivenrisetoentirelynewtechno- gies. Materials science advances have underpinned the technology revolution that has driven societal changes for the last ?fty years. Obviouslytheendisnotinsight!Futuretechnology-basedproblemsd- inatethecurrentscene.Highonthelistarecontrolandconservationofenergy and environment, water purity and availability, and propagating the inf- mation revolution. All fall in the technology domain. In every case proposed solutions begin with new forms of materials, materials processing or new arti?cial material structures. Scientists seek new forms of photovoltaics with greater e?ciency and lower cost. Water purity may be solved through surface control, which promises new desalination processes at lower energy and lower cost. Revolutionary concepts to extend the information revolution reside in controlling the 'spin' of electrons or enabling quantum states as in quantum computing. Ion-beam experts make substantial contributions to all of these burgeoning sciences.

Harry Bernas is Research Director at the French National Research Center (CNRS). He has held various positions related to interdisciplinary research in CNRS, and was founding coordinator of the European COST program on Plasma- and Ion- Surface Engineering. He has authored over 200 papers in international journals and holds several patents. His main research interests are the study and control of materials nonequilibrium properties in metallic and oxide glasses, metal hydrides, semiconductors and metals under irradiation. In recent years, he has concentrated on the control via ion irradiation of magnetic properties in metallic nanostructures, and on the beam-controlled synthesis and optical properties of semiconductor and metal nanoclusters in glasses. He can be reached at bernas@csnsm.in2p3.fr.

Harry Bernas is Research Director at the French National Research Center (CNRS). He has held various positions related to interdisciplinary research in CNRS, and was founding coordinator of the European COST program on Plasma- and Ion- Surface Engineering. He has authored over 200 papers in international journals and holds several patents. His main research interests are the study and control of materials nonequilibrium properties in metallic and oxide glasses, metal hydrides, semiconductors and metals under irradiation. In recent years, he has concentrated on the control via ion irradiation of magnetic properties in metallic nanostructures, and on the beam-controlled synthesis and optical properties of semiconductor and metal nanoclusters in glasses. He can be reached at bernas@csnsm.in2p3.fr.

Foreword 6
Preface 8
References 10
Contents 11
Fundamental Concepts of Ion-Beam Processing 16
Introduction: Basic Mechanisms of Ion-Solid Interactions 16
Electronic Excitation 17
Nuclear Collisions 18
Defect Production 18
Sputtering 19
Ion-Beam Mixing 20
Thermal Spikes 20
Radiation-Enhanced Diffusion 23
Primary Recoil Spectrum 24
Irradiation-Induced Stresses and Surface Effects 26
Defect Accumulation 27
Collective Behavior: Irradiation-Induced Viscous Flow 28
Phase Transformations 30
Order-Disorder Alloys: Cu3Au 30
Phase-Separating Alloys: AgCu 33
Amorphization 35
Phase Transformations: Effective Temperature Model 37
Phase Decomposition 38
Order-Disorder 39
Beyond the Effective Temperature Criterion 39
Conclusions 40
References 41
Index 43
Precipitate and Microstructural Stability in Alloys Subjected to Sustained Irradiation 44
Introduction 44
Elementary Processes in Metallic Alloys Subjected to Irradiation 45
Precipitate Evolution in Irradiated Alloys 48
Experimental Observations 48
Models with Unidirectional Ballistic Mixing 50
Models Including Full Account of Forced Mixing 53
Order-Disorder Transformations 58
Radiation-Induced Segregation and Precipitation 59
Defect Clustering and Related Microstructural Evolutions 60
Conclusion 62
References 63
Index 66
Spontaneous Patterning of Surfaces by Low-Energy Ion Beams 68
Introduction 68
Varieties of Ion-Induced Pattern Formation 70
Bradley-Harper Ripples (Ion-Induced Orientation) 70
Ehrlich-Schwoebel Patterns (Diffusion-Controlled Orientation) 72
Low-Temperature or Athermal BH Behavior 73
Nonroughening Behavior 73
Other Types of Patterning (Quantum Dots, Kinetic Roughening) 73
Kinetic Phase Diagram for Cu(001) 74
Competing Kinetic Mechanisms and the Linear Instability Model 75
BH Instability Model 75
Diffusional Roughening and the ES Instability 80
Other Regimes of Patterning - Beyond the Instability Model 81
References 83
Index 86
Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon 87
Introduction 87
Overview of Ion-Beam-Induced Amorphization 90
The Effect of Temperature on Defect Accumulation 90
Preferential Amorphization at Surfaces and Defect Bands 92
Mechanisms of Amorphization: The Role of Defects 93
Layer-by-Layer Amorphization 96
Overview of Ion-Beam-Induced Epitaxial Crystallization: Experiment and Modeling 97
IBIEC Temperature Dependence 97
IBIEC Observations and Dependencies 98
Ion-Cascade Effects on IBIEC: The Role of Atomic Displacements and Mobile Defects 103
IBIEC Models 111
Interface Evolution 112
IBIEC and Silicide Precipitation 118
Precipitate Distribution 119
Phase Composition, Structure and Orientation 119
Conclusion 120
References 121
Index 124
Voids and Nanocavities in Silicon 126
Introduction 126
Formation of Nanocavities and Voids by Ion Irradiation 128
Nanocavity Formation by H and He Irradiation 129
Irradiation-Induced Vacancy Excess and Void Formation 132
Interaction of Impurities with Nanocavities 134
Interactions at Low Levels of Metal Contamination 135
Interactions at High Metal Concentration Levels 138
Mechanisms for Metal Trapping and Precipitation at Cavities 141
Trapping and Precipitation at So-Called Rp/2 Defects 145
Stability Under Subsequent Irradiation 148
Interaction of Defects with Voids and Nanocavities 149
Preferential Amorphization 151
Shrinkage and Removal of Open-Volume Defects During Amorphization 154
Conclusions 156
References 156
Index 159
Damage Formation and Evolution in Ion-Implanted Crystalline Si 160
Introduction 160
Point-Like Defects Formation and Evolution 167
Point Defect Properties 169
Vacancy and Vacancy-Type Defects 169
Interstitial and Interstitial-Type Defects 172
Point-Defect Generation: Electron Irradiation vs. Ion Implantation and Role of Impurities 175
Room Temperature Diffusion of Point-Like Defects 181
Evolution from Point to Secondary Defects 185
Formation and Annihilation of I Clusters and Extended Defects 194
Evolution from Secondary Defects to Interstitial Clusters 194
Interstitial Cluster Formation and Dissociation 198
Interstitial Cluster Characterization 200
Extended Defect Characterization 205
Transition from Defect Clusters to Extended Defects 207
Simulation of Defect Evolution 211
Conclusion 215
References 217
Index 223
Point Defect Kinetics and Extended-Defect Formation during Millisecond Processing of Ion-Implanted Silicon 226
Conclusions 236
References 237
Index 238
Magnetic Properties and Ion Beams: Why and How 240
Introduction 240
Magnetic Anisotropy in Ultrathin Films 241
Controlling Thin-Film Magnetic Anisotropy by Ion Irradiation 243
The Strategy 243
Modeling Ballistic Recoil-Induced Structural Modifications 244
Experimental Measurements of Structural Modifications 246
Experimental Variation of the Magnetic Anisotropy 249
Relation Between Structural and Magnetic Anisotropies 250
Magnetic Reversal Properties Under Irradiation 252
A Magnetic Anisotropy Phase Diagram 256
Summary 258
Magnetization Reversal in Irradiation-Fabricated Nano-Structures 259
Ion Beam-Induced Ordering of Intermetallic Alloys 261
A Word on Control of Exchange-Bias Systems via Ion Irradiation 263
References 263
Index 267
Structure and Properties of Nanoparticles Formed by Ion Implantation 268
Introduction 268
Nanoparticle Synthesis 270
Microstructures 273
Optoelectronic Properties 276
Nonlinear Optical Materials 276
Light-Emitting Materials 280
Magnetic Materials 285
Smart Nanocomposites 289
Controlling Nanocrystal Size, Spacing, and Location 292
Conclusion 293
References 294
Index 298
Metal Nanoclusters for Optical Properties 299
Introduction 299
Optical Properties of Metal Nanoclusters 300
Metal-Nanoparticle Synthesis by Ion Implantation 304
The Issue of Size Distribution 304
Ion Implantation for Plasmonic Nanostructures 306
Nucleation and Growth of Metal Nanoparticles 306
Linear (LO) and Nonlinear Optical (NLO) Properties 313
Core-Satellite for Nonlinear Optical Properties 315
Plasmonic Nanostructures 317
Conclusions 321
References 322
Index 327
Ion Beams in the Geological Sciences 329
Introduction 329
Diffusion 330
Applications 330
Experiments 334
Alteration Processes 337
Radiation Effects in Minerals 342
Conclusion 352
References 353
Index 355
Ion-Beam Modification of Polymer Surfaces for Biological Applications 356
Introduction 356
Surface Properties Drive Biological System Interactions 358
Role of Surface Free Energy (SFE) 359
Surface Termination 361
Electronic Structure and Electrical Properties of Surfaces 362
Ion Beams and Surface Properties 362
Ion-Dose-Dependent Chemistry 363
Beam-Induced Modification of Surface Properties Relevant to Biological Interactions 365
The "Extrinsic Mechanism" 366
The "Intrinsic Mechanism" 367
Surface Chemical Modification 367
Heterogeneous Nanometric Phases 369
Surface Grafting of Chemical Functionalities 371
Biological Response of Ion-Beam Modified Polymer Surfaces 373
Conclusions 376
References 376
Index 379
Index 381

Erscheint lt. Verlag 3.10.2009
Reihe/Serie Topics in Applied Physics
Zusatzinfo XV, 376 p. 180 illus., 2 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte alloy • Controlled materials modification • Controlled materials synthesis • Crystal • Directed energy nanostructuring • Irradiation effects • Metastable materials • Nanoparticle • Optics • Polymer • semiconductor • thermodynamics
ISBN-10 3-540-88789-X / 354088789X
ISBN-13 978-3-540-88789-8 / 9783540887898
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich