Inorganic Pigments (eBook)

Fachbuch-Bestseller

(Autor)

eBook Download: EPUB
2023 | 2nd, Revised and Extended Edition
390 Seiten
De Gruyter (Verlag)
978-3-11-074399-9 (ISBN)

Lese- und Medienproben

Inorganic Pigments - Gerhard Pfaff
Systemvoraussetzungen
89,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen


Gerhard Pfaff, Technical University Darmstadt, Germany.

1 Fundamentals, general aspects, color, application


1.1 Definitions and classification


Pigments are defined in the modern context as substances consisting of small particles that are practically insoluble in an application system and that are used as colorants or because of their anticorrosive or magnetic properties [1]. They differ from dyes, which also belong to the class of colorants, primarily due to the fact that dyes are practically completely soluble in the medium of application. The most important application media for pigments are automotive and industrial coatings, paints, plastics, printing inks, cosmetic formulations, and building materials. Other uses of pigments are in paper, rubber, glass, porcelain, glazes, and artists’ colors.

The term “pigment” descends from the Latin word “pigmentum”. It was originally used in the sense of a coloring matter. The use of the word was later extended to indicate colored decoration. The term “pigment” was also used in the late Middle Ages for plant and vegetable extracts, particularly for those with coloring properties. In biological terminology, it is still used to indicate vegetable and animal colorants that are present in “solved” form as extremely small particles in cells or cell membranes, as deposits in tissues, or suspended in bodily fluids. In all these cases, the term “pigment” is misleading and would better be replaced by the more suitable term “dye” or “dyestuff”.

The term “colorant” covers all colored compounds regardless of their origin and utility for coloration or other purposes. Colorants are divided not only into pigments and dyes but also into natural and synthetic compounds. Some pigments and some dyes exist as natural and synthetic variants. Pigment particles, when applied, have to be attached to surfaces (substrates) by additional materials, such as binder systems (paints, coatings, printing inks, cosmetics), plastics, or glazes. Dyes are applied to various substrates, such as textiles, leather, paper, or hair, using a liquid in which they are dissolved. In contrast to pigments, dyes must have an affinity to the substrates on which they are fixed.

Pigments are differentiated according to their chemical composition and with respect to their optical and technical properties. A fundamental distinction is that between inorganic and organic pigments.

Figure 1.1 shows a rough classification of pigments and dyes within the category of colorants (coloring materials). Fillers as a substance class closely related to pigments are involved here. It can be clearly seen that dyes are based only on organic compounds. It also becomes clear that organic white pigments do not exist.

Fig. 1.1: Classification of colorants (✶ effect pigments, transparent pigments, luminescent pigments, functional pigments; ✶✶ effect pigments, luminescent pigments).

Figure 1.2 contains a detailed classification of inorganic pigments. White, colored, black, and special pigments exist. The most important representatives for the different pigment categories are shown. White pigments are represented by titanium dioxide (rutile and anatase), zinc sulfide including lithopone, and zinc oxide. Colored pigments show the broadest variation, ranging from blue (mixed metal oxides, ultramarine, iron blue) via green (chromium oxide, mixed metal oxides) and yellow (iron oxide hydroxide, mixed metal oxides, lead chromate, bismuth vanadate, cadmium sulfide) up to red (iron oxide, cadmium selenide, lead molybdate, cerium sulfide, oxonitrides). The main representative for black pigments is carbon black. Based on this variety of colors, whites and blacks, with inorganic pigments it is possible to design nearly all thinkable colors and noncolors (white, black, gray), including bright and dark color shades by the use of pure single pigments or pigment mixtures.

Fig. 1.2: Classification of inorganic pigments.

Special pigments are subdivided into the classes of effect pigments (luster pigments) with the two subclasses special effect pigments (pearlescent pigments, interference pigments) and metal effect pigments, transparent pigments, luminescent pigments with the two subclasses fluorescent pigments and phosphorescent pigments, magnetic pigments, and anticorrosive pigments. The last two classes, as well as a part of the transparent pigments belong to the category functional pigments. Other materials that count as functional pigments are electrically conductive, IR-reflective, UV-absorbing, and laser-marking pigments.

The optical behavior of effect pigments is based either on the directional reflection of visible light from predominantly two-dimensional and aligned metallic (metal effect pigments) or highly refractive transparent pigment particles (pearlescent pigments) or on the phenomenon of interference (interference pigments).

Transparent pigments are characterized by very small particles with sizes in the range below 100 nm and large specific surface areas. Most of the technically relevant pigments consist of particles which are even smaller than 30 nm. They are classified as nanomaterials. Pigmentation with these pigments leads to a transparent appearance of the application systems.

Luminescent pigments (luminescent materials, luminophores, phosphors) show optical effects based on the ability to absorb radiation and emit it as light of longer wavelength with a time delay (phosphorescence) or without a time delay (fluorescence). Light emission often occurs in the visible spectral range. External energy is necessary to enable luminescent materials to generate light.

Functional pigments are not about color but about different physical properties that cannot be derived from the original term “pigmentum”. Such materials, which exhibit magnetic, anticorrosive, electrically conductive, IR-reflective, UV-absorbing, and other physical properties can be appropriately described by the term “functional pigments”. Some of the transparent pigments and the luminescent pigments can also be classified as functional pigments. The reason why functional pigments are classified as pigments is because of their similar morphological and application technical properties.

Fillers (extenders) are powdery substances that, like pigments, are practically insoluble in the application system. They are typically white and are used because of their chemical and physical properties. The distinction between pigments and fillers is made based on the specific application. Another criterion is the refractive index, which for fillers is usually below 1.7 and above this value for pigments. There is, however, no fixed definition of the value for the refractive index to distinguish both product classes. A filler is not a colorant in the proper sense, but a substance that modifies the application medium in order to improve its technical characteristics, to influence optical and coloristic properties, or to increase the volume. Fillers are also used to lower the consumption of more expensive binder components. Those fillers, which are used mainly for cost reduction reasons are also called extenders. Fillers are often applied together with pigments to improve the properties of the medium in which they are incorporated.

Another classification for inorganic pigments is based on the chemical composition. Table 1.1 contains relevant chemical compositions of inorganic pigments together with examples. Some of the pigments mentioned here are historically significant, but are no longer of any practical importance today. These include not only some of the sulfides (HgS, As2S3) but also stannate, phosphate, arsenate, and antimonate-based pigments. The main reason why these pigments are no longer used is their content of toxic components. The formerly important lead oxides PbO and Pb3O4 are becoming less important due to the undesired lead content. The carbonate hydroxides of lead and copper have also lost the great importance they once had. Some newer developments such as γ-Ce2S3 or the oxonitrides have not entered the pigment market because they do not meet important application criteria or are too costly to produce.

Tab. 1.1:Classification of inorganic pigments based on the chemical composition.

Chemical composition Pigment examples
Oxide, oxide hydroxide TiO2, ZnO, α-Fe2O3, α-FeOOH, γ-Fe2O3, Fe3O4, Cr2O3, CrOOH, PbO, Pb3O4, Mn3O4, α-MnOOH, Sb2O3
Complex oxide CoAl2O4, CuCr2O4, Co2TiO4, (Ti,Ni,Sb)O2, (Ti,Cr,Sb)O2
Carbonate hydroxide 2 PbCO3 · Pb(OH)2, 2 CuCO3 · Cu(OH)2, CuCO3 · Cu(OH)2
Sulfide, selenide ZnS, CdS, Cd(S,Se), CdSe, γ-Ce2S3, HgS, As2S3
Chromate, molybdate PbCrO4,...

Erscheint lt. Verlag 21.8.2023
Reihe/Serie De Gruyter Textbook
Zusatzinfo 66 b/w and 64 col. ill., 36 b/w tbl.
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte Anorganik • Chemische Industrie • Coatings • Color • colorants • Coloring Matter • Dyes • Farbmittel • Lacke und Anstrichstoffe • Pigmente • Pigments • Surface Chemistry • Technische Chemie
ISBN-10 3-11-074399-X / 311074399X
ISBN-13 978-3-11-074399-9 / 9783110743999
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
EPUBEPUB (Wasserzeichen)
Größe: 10,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich