Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants -

Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants

Naoki Soneda (Herausgeber)

Buch | Hardcover
432 Seiten
2014
Woodhead Publishing Ltd (Verlag)
978-1-84569-967-3 (ISBN)
198,25 inkl. MwSt
Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants discusses RPV design, embrittlement processes in RPVs in different reactor types as well as techniques for studying RPV embrittlement.
Reactor Pressure Vessels (RPVs) contain the fuel and therefore the reaction at the heart of nuclear power plants. They are a life-determining structural component: if they suffer serious damage, the continued operation of the plant is in jeopardy. This book critically reviews irradiation embrittlement, the main degradation mechanism affecting RPV steels, and mitigation routes for managing the RPV lifetime.

Part I reviews RPV design and fabrication in different countries, with an emphasis on the materials required, their important properties, and manufacturing technologies. Part II then considers RVP embrittlement in operational nuclear power plants using different reactors. Chapters are devoted to embrittlement in light-water reactors, including WWER-type reactors and Magnox reactors. Finally, Part III presents techniques for studying embrittlement, including irradiation simulation techniques, microstructural characterisation techniques, and probabilistic fracture mechanics.

Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants provides a thorough review of an issue that is central to the safety of nuclear power generation. The book includes contributions from an international team of experts, and will be a useful resource for nuclear plant operators and managers, relevant regulatory and safety bodies, nuclear metallurgists and other academics in this field

Dr Naoki Soneda is an Associate Vice President at the Central Research Institute of Electric Power Industry, Japan, and is the author of numerous papers on RVP steels.

Contributor contact details
Woodhead Publishing Series in Energy
Preface
Part I: Reactor pressure vessel (RPV) design and fabrication

1: Reactor pressure vessel (RPV) design and fabrication: the case of the USA

Abstract
1.1 Introduction
1.2 American Society of Mechanical Engineers (ASME) Code design practices
1.3 The design process
1.4 Reactor pressure vessel (RPV) materials selection
1.5 Toughness requirements
1.6 RPV fabrication processes
1.7 Welding practices


2: Reactor pressure vessel (RPV) components: processing and properties

Abstract
2.1 Introduction
2.2 Advances in nuclear reactor pressure vessel (RPV) components
2.3 Materials for nuclear RPVs
2.4 Manufacturing technologies
2.5 Metallurgical and mechanical properties of components
2.6 Conclusions


3: WWER-type reactor pressure vessel (RPV) materials and fabrication

Abstract
3.1 Introduction
3.2 WWER reactor pressure vessel (RPV) materials
3.3 Production of materials for components and welding techniques
3.4 Future trends




Part II: Reactor pressure vessel (RPV) embrittlement in operational nuclear power plants

4: Embrittlement of reactor pressure vessels (RPVs) in pressurized water reactors (PWRs)

Abstract
4.1 Introduction
4.2 Characteristics of pressurized water reactor (PWR) reactor pressure vessel (RPV) embrittlement
4.3 US surveillance database
4.4 French surveillance database
4.5 Japanese surveillance database
4.6 Surveillance databases from other countries
4.7 Future trends


5: Embrittlement of reactor pressure vessels (RPVs) in WWER-type reactors

Abstract
5.1 Introduction
5.2 Characteristics of embrittlement of WWER reactor pressure vessel (RPV) materials
5.3 Trend curves
5.4 WWER surveillance programmes
5.5 RPV annealing in WWER reactors
5.6 RPV annealing technology
5.7 Sources of further information and advice


6: Integrity and embrittlement management of reactor pressure vessels (RPVs) in light-water reactors

Abstract
6.1 Introduction
6.2 Parameters governing reactor pressure vessel (RPV) integrity
6.3 Pressure–temperature operating limits
6.4 Pressurized thermal shock (PTS)
6.5 Mitigation methods
6.6 Licensing considerations


7: Surveillance of reactor pressure vessel (RPV) embrittlement in Magnox reactors

Abstract
7.1 Introduction
7.2 History of Magnox reactors
7.3 Reactor pressure vessel (RPV) materials and construction
7.4 Reactor operating rules
7.5 Design of the surveillance schemes
7.6 Early surveillance results
7.7 Dose–damage relationships and intergranular fracture in irradiated submerged-arc welds (SAWs)
7.8 Influence of thermal neutrons
7.9 Validation of toughness assessment methodology by RPV SAW sampling
7.10 Final remarks
7.11 Acknowledgements




Part III: Techniques for the evaluation of reactor pressure vessel (RPV) embrittlement

8: Irradiation simulation techniques for the study of reactor pressure vessel (RPV) embrittlement

Abstract
8.1 Introduction
8.2 Test reactor irradiation
8.3 Ion irradiation
8.4 Electron irradiation
8.5 Advantages and limitations
8.6 Future trends
8.7 Sources of further information and advice


9: Microstructural characterisation techniques for the study of reactor pressure vessel (RPV) embrittlement

Abstract
9.1 Introduction
9.2 Microstructural development and characterisation techniques
9.3 Transmission electron microscopy (TEM)
9.4 Small-angle neutron scattering (SANS)
9.5 Atom probe tomography (APT)
9.6 Positron annihilation spectroscopy (PAS)
9.7 Auger electron spectroscopy (AES)
9.8 Other techniques
9.9 Using microstructural analyses to understand the mechanisms of reactor pressure vessel (RPV) embrittlement
9.10 Grain boundary segregation
9.11 Matrix damage
9.12 Solute clusters
9.13 Mechanistic framework to develop dose–damage relationships (DDRs)
9.14 Recent developments and overall summary


10: Evaluating the fracture toughness of reactor pressure vessel (RPV) materials subject to embrittlement

Abstract
10.1 Introduction
10.2 The development of fracture mechanics
10.3 Plane-strain fracture toughness and crack-arrest toughness
10.4 Current standard of fracture toughness curve
10.5 Effects of irradiation on fracture toughness
10.6 Fracture toughness versus Charpy impact energy
10.7 Heavy Section Steel Technology Program and other international reactor pressure vessel (RPV) research programs
10.8 Advantages and limitations of fracture toughness testing
10.9 Future trends


11: Embrittlement correlation methods to identify trends in embrittlement in reactor pressure vessels (RPVs)

Abstract
11.1 Introduction
11.2 Development of the embrittlement correlation method
11.3 Embrittlement correlation methods: USA
11.4 Embrittlement correlation methods: Europe
11.5 Embrittlement correlation methods: Japan
11.6 Conclusions


12: Probabilistic fracture mechanics risk analysis of reactor pressure vessel (RPV) integrity

Abstract
12.1 Introduction
12.2 Risk evaluation procedures for assessing reactor pressure vessel (RPV) integrity
12.3 Probabilistic fracture mechanics analysis software
12.4 Conditional probability computational procedure
12.5 Example calculations and applications
12.6 Future trends




Index

Reihe/Serie Woodhead Publishing Series in Energy
Verlagsort Cambridge
Sprache englisch
Maße 156 x 234 mm
Gewicht 790 g
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 1-84569-967-X / 184569967X
ISBN-13 978-1-84569-967-3 / 9781845699673
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
86,00