Embedded Memories for Nano-Scale VLSIs (eBook)

Kevin Zhang (Herausgeber)

eBook Download: PDF
2009 | 2009
400 Seiten
Springer US (Verlag)
978-0-387-88497-4 (ISBN)

Lese- und Medienproben

Embedded Memories for Nano-Scale VLSIs -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.
Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.

Contents 6
Contributors 7
to 1 Introduction 8
1.1 Chapter 2: Embedded Memory Architecture for Low-Power Application Processor, by Hoi Jun Yoo 10
1.2 Chapter 3: Embedded SRAM Design in Nanometer-Scale Technologies, by Hiroyuki Yamauchi 11
1.3 Chapter 4: Ultra Low Voltage SRAM Design, by Naveen Verma and Anantha P. Chandrakasan 11
1.4 Chapter 5: Embedded DRAM in Nano-Scale Technologies, by John Barth 11
1.5 Chapter 6: Embedded Flash Memory, by Hideto Hidaka 11
1.6 Chapter 7: Embedded Magnetic RAM, by Hideto Hidaka 11
1.7 Chapter 8: FeRAM, by Shoichiro Kawashima and Jeffrey S. Cross 12
1.8 Chapter 9: Statistical Blockade: Estimating Rare Event Statistics for Memories, by Amith Singhee and Rob A. Rutenbar 12
to 2 Embedded Memory Architecture for Low-Power Application Processor 13
2.1 Memory Hierarchy 13
2.1.1 Introduction 13
2.1.2 Advantages of the Memory Hierarchy 14
2.1.3 Components of the Memory Hierarchy 15
2.1.3.1 Register File 15
2.1.3.2 Cache 16
2.1.3.3 Scratch Pad Memory 16
2.1.3.4 Off-Chip RAMs 16
2.1.3.5 Mass Storages 17
2.2 Memory Access Pattern Related Techniques 17
2.2.1 Bank Interleaving 17
2.2.2 Address Alignment Logic in KAIST RAMP-IV 20
2.2.3 Read--Modify--Write (RMW) DRAM 21
2.3 Embedded Memory Architecture Case Studies 22
2.3.1 PXA300 Processor 22
2.3.2 Imagine 24
2.3.3 Memory-Centric NoC 26
2.3.3.1 SIFT Algorithm 27
2.3.3.2 Architecture of the Memory-Centric NoC 29
2.3.3.3 Memory-Centric NoC Operation 30
2.4 Low-Power Embedded Memory Design 33
2.4.1 General Low-Power Techniques 33
2.4.2 Embedded DRAM Design in RAMP-IV 35
2.4.3 Combination of Processing Units and Memory -- Visual Image Processing Memory 38
to 3 Embedded SRAM Design in Nanometer-Scale Technologies 45
3.1 Introduction 45
3.1.1 Embedded SRAMs in VLSI Chip 46
3.1.2 SRAM Cells Array Configuration 47
3.1.2.1 Six Transistor SRAM Cell 48
3.1.2.2 SRAM Read 48
3.1.2.3 SRAM Write 49
3.1.2.4 SRAM Data Retention 50
3.1.3 SRAM Cell Scaling Trend 50
3.1.4 SRAM-Operating Voltage V DD Scaling Trend 52
3.2 Functional Margin Issues with Scaled Nanometer-Scale SRAM 52
3.2.1 Static Noise Margin (SNM) 52
3.2.2 Write Margin (WRM) 54
3.2.3 Cell Current (Icell) Distribution 54
3.2.4 V DD Scaling and SRAM Functionality 55
3.2.5 Device Feature Size Dependency of Functional Margins 56
3.3 Cell Stability Improvement 58
3.3.1 Read and Write Margin Assist Circuits 59
3.3.1.1 Read Margin Assist and Its Limitation 59
3.3.1.2 Write Margin Assist and Its Limitation 62
3.3.1.3 Body Biasing Scheme for Read and Write Assists and Its Limitation 65
3.3.1.4 Dynamic vs Static Read and Write Cell Stabilities 66
3.3.1.5 SRAM-Designated Power Supply Scheme 66
3.3.2 SRAM with Multiple Power Supplies Against Single-Rail Scheme 67
3.4 New Cell Topology to Improve Read and Write Stabilities 70
3.4.1 8T SRAM 71
3.4.2 10T SRAM 72
3.5 Read and Write Multiplexing 73
3.5.1 Pulsed Word-Line and Bit-Line Scheme 74
3.5.2 Time Division for Read with Suppressed WL and Write Operation 75
3.5.3 Time Division for Read with Decoupled Read Port and Write Operation 75
3.6 Analysis on SRAM Design Solutions with Scaling 76
3.6.1 V T Random Variation Trend 77
3.6.2 Limit of Design Solutions with Increasing 0 VT 77
3.6.3 Extension of Limit of Design Solutions 79
3.6.3.1 RMW Operation with Decoupled Read Port 79
3.6.3.2 Error Correction Scheme for Redundancy 80
3.6.4 Area Scaling Trend Comparisons for Various Design Solutions 81
3.6.4.1 Area Comparisons of SNM and WRM Assists 83
3.6.4.2 Area Comparisons of 8T and 10T SRAMs 84
3.6.5 Comparisons of Design Options 85
3.7 SRAM Leakage Issues 86
3.7.1 SRAM Leakage Breakdown 86
3.7.2 SRAM Leakage Scaling Trend 87
3.7.3 High- Benefit for Leakage Reduction 88
3.7.4 Leakage Reduction 89
3.7.4.1 Power Gating Switches 89
3.7.4.2 Virtual Power Line Level Control 91
3.8 Conclusion 92
to 4 Ultra Low Voltage SRAM Design 95
4.1 Introduction 95
4.2 Minimum Energy and Leakage-Power Operation 96
4.3 Ultra Low Voltage SRAM Challenges 99
4.3.1 MOSFET Degradations at Ultra Low Voltages 101
4.3.2 Conventional SRAM Degradations at Ultra Low Voltages 102
4.3.2.1 Symmetric-6T Failures 102
4.3.2.2 Cell Read-Current Degradation 104
4.3.2.3 Bit-Line Leakage 105
4.4 Ultra Low Voltage Bit-Cell Design 105
4.4.1 Buffered-Read Bit-Cells 107
4.4.1.1 10T Bit-Cells 110
4.4.1.2 8T Bit-Cells 113
4.4.2 Non-buffered-Read Bit-Cells 117
4.4.2.1 7T Bit-Cell 118
4.4.2.2 Asymmetric 6T Bit-Cell 119
4.4.2.3 10T Schmitt Trigger Bit-Cell 120
4.5 Ultra Low Voltage Periphery Design 121
4.5.1 Column-Interleaved Layout 121
4.5.1.1 Soft-Error Correction Coding Complexity 123
4.5.1.2 Sense-Amplifier Sharing 123
4.5.2 Write-Assists 123
4.5.3 Sensing Circuits 126
4.5.3.1 Leakage Replica Scheme 126
4.5.3.2 Sense-Amplifier Redundancy 126
4.5.3.3 Small-Signal Single-Ended Sensing 128
4.6 Summary and Conclusions 129
to 5 Embedded DRAM in Nano-scale Technologies 133
5.1 Introduction 133
5.1.1 Migrating from the Commodity DRAM Base to the Logic Base 134
5.2 Fundamental DRAM Operation 136
5.2.1 The Capacitor 137
5.2.2 The Transistor 138
5.2.3 Cost and Process Complexity 140
5.3 Overview of Embedded DRAM Architecture 140
5.3.1 Single-Bank Operation 141
5.3.2 Multi-bank Operation 142
5.3.3 Macro Organization 144
5.3.4 Array Core Organization 145
5.3.5 Array Core Operation 146
5.3.6 Row System 146
5.3.7 Charge Sensing 147
5.3.8 Precharge Level 149
5.3.9 Cell Read Performance 150
5.3.10 Reference Cells 150
5.3.11 Bitline Twisting 151
5.3.12 Data Path 152
5.4 Test Strategy 152
5.4.1 BIST Engine Design Point 153
5.4.1.1 Test Multiplexor 154
5.4.1.2 Instruction Memory 154
5.4.1.3 Sequencer 155
5.4.1.4 Address Generator 155
5.4.1.5 Data Generator 155
5.4.2 Test and Diagnostic Capability 156
5.5 Cycle Time Advances 157
5.5.1 Fast Cycle Architecture 158
5.5.2 Compilation 160
5.5.3 Direct Write 161
5.5.4 Pipelining 163
5.5.5 BIST Enhancements 166
5.6 On Processor Embedded DRAM Cache 167
5.6.1 Current Level of Integration 167
5.6.2 SOI Embedded DRAM Technology Features 168
5.6.3 Collar Process Elimination 168
5.6.4 Floating Body Effects 169
5.6.5 Array Floating Body 170
5.6.6 SOI Macro Architecture 170
5.6.7 Pyramid Row 171
5.6.8 Short Bitline 172
5.6.9 Overhead 173
5.6.10 Micro Sense Amplifier (SA) 173
5.6.11 Tertiary Sense Amplifier 174
5.6.12 Operation Truth Table 175
5.6.13 Write Waveforms 175
5.6.14 Read Waveforms 176
5.6.15 Cycle Limits 177
5.6.16 Micro Sense Amplifier Overhead 178
5.6.17 SOI Macro Features 179
5.7 Embedded DRAM Summary 179
to 6 Embedded Flash Memory 182
6.1 Application and Technology Trend in Embedded Nonvolatile Memories 182
6.1.1 Introduction 182
6.1.2 Market and Application Overviews for Embedded Nonvolatile Memories 185
6.1.3 Automotive Application Examples 189
6.1.4 Requirements for Embedded Flash Memory Applications and Trends 193
6.2 Embedded Flash Memory Technology 195
6.2.1 Floating-Gate Flash Technology 198
6.2.1.1 1Tr-NOR Cell and Operations 199
6.2.1.2 Split-Gate Cell (1.5Tr-Cell) 203
6.2.1.3 2Tr Cell for Low-Voltage, Low-Power Operations 208
6.2.2 Charge-Trapping Flash Technologies, SONOS and Nano-dot 209
6.2.2.1 SONOS Basics 210
6.2.2.2 Recent SONOS Trends 211
6.2.2.3 SONOS Cell with Localized Charge Trapping 212
6.2.2.4 Split-Gate SONOS Cell 216
6.2.2.5 2Tr SONOS Cell 219
6.2.2.6 Nano-dot Memory Device 220
6.2.2.7 Advantages and Challenges in Charge-Trapping Flash Devices 221
6.3 Embedded Flash Memory Design 1
6.3.1 Benefits of Embedded Flash Memory and Design Considerations 222
6.3.2 Basic Flash Memory Design with Floating-Gate 1Tr-NOR Cell 225
6.3.3 Embedded Flash Memory Design Examples 230
6.3.3.1 High-Performance Flash-MCU Design 231
6.3.3.2 Embedded Flash Memory Design for Reconfigurable Logic 234
6.3.3.3 Fully CMOS-Compatible Nonvolatile Storage Design by CMOS Flash 235
6.3.3.4 Fully CMOS-Compatible Nonvolatile Storage Design by OTP (Fuse) 239
6.3.4 Future Trend in Embedded Flash Memory Technology and Design 241
to 7 Embedded Magnetic RAM 246
7.1 Embedded Magnetic RAM Technology and Design 246
7.1.1 MRAM Basics 246
7.1.1.1 History of MRAM 246
7.1.1.2 Principle of TMR-MRAM 252
7.1.2 MRAM Integration and Basic Design 255
7.1.2.1 MRAM Cell Structure and Integration 255
7.1.2.2 Basic TMR-MRAM Design Considerations 257
7.1.2.3 Basic TMR-MRAM Design 259
7.1.2.4 MRAM Cell Architectures 264
7.1.2.5 Spin-Torque Switching MRAM 266
7.2 MRAM Design Examples and Applications 268
7.2.1 MRAM Design Examples 268
7.2.1.1 A 4 Mbit MRAM with Toggle Mode of Operation 268
7.2.1.2 A 16 Mbit MRAM with Dummy Column Architecture 271
7.2.1.3 A 1Tr-4MTJ MRAM with Self-Reference Sensing '13322'135 272
7.2.1.4 A New Field-Switching Scheme with A 2T-1MTJ Cell '133 18 , 19 '135 272
7.2.2 MRAM Applications and Future Challenges 274
7.3 Embedded Nonvolatile Memory Frontiers and Challenges 276
7.4 Conclusions 280
to 8 FeRAM 283
8.1 Introduction 283
8.2 Ferroelectric Materials 283
8.2.1 Fundamentals of Ferroelectric Materials 284
8.2.2 Electrical Characteristics 289
8.3 FeRAM Cells and Circuit Technology 298
8.3.1 FeRAM Cell Physical and Schematic Structures 298
8.3.2 Basic Sensing Architectures 303
8.3.3 Redundancy and Data Protection for FeRAM 310
8.3.4 Circuit Challenges to Fatigue-Free Operation or Nondestructive Read Out 313
8.4 Current FeRAM Markets 316
8.5 Low-Voltage Challenges and Future Trends 321
8.5.1 Low-Voltage Challenges 322
8.5.2 Future Trends 324
to 9 Statistical Blockade: Estimating Rare Event Statistics for Memories 333
9.1 Introduction 333
9.2 The Parametric Yield of Memory Arrays 334
9.2.1 Simple, Approximate Analysis 335
9.2.2 Accurate Analysis 335
9.2.3 Incorporating Redundancy 336
9.2.4 The Poisson Yield Model 338
9.2.4.1 An Example: Quantifying Fault Tolerance with Statistical Analysis 339
9.3 Estimating Failure Statistics with Monte Carlo Simulation 340
9.3.1 Process Variation Statistics: Prerequisites for Statistical Analysis 340
9.3.2 Monte Carlo Simulation 341
9.3.3 The Problem with Memories 342
9.3.4 Methods for Estimating Rare Events Statistics 342
9.3.5 Methods in this Chapter: A Brief Overview 343
9.4 Modeling Rare Event Statistics 344
9.4.1 The Tail Modeling Problem 345
9.4.2 Extreme Value Theory: Tail Distributions 346
9.4.3 Estimating the Tail: Fitting the GPD to Data 349
9.4.3.1 Maximum Likelihood Estimation 350
9.4.3.2 Moment Matching 351
9.4.3.3 Probability-Weighted Moment Matching 352
9.5 Statistical Blockade 353
9.5.1 Classification 353
9.5.1.1 Support Vector Classifier 354
9.5.2 The Statistical Blockade Algorithm 358
9.5.2.1 Note on Choosing and Unbiasing the Classifier 360
9.5.3 Experimental Results 361
9.5.3.1 6T SRAM Cell 363
9.5.3.2 64-bit SRAM Column 365
9.5.3.3 Master--Slave Flip-Flop with Scan Chain 368
9.6 Making Statistical Blockade Practical 371
9.6.1 Conditionals and Disjoint Tail Regions 372
9.6.1.1 The Problem 372
9.6.1.2 The Solution 374
9.6.2 Extremely Rare Events and Their Statistics 375
9.6.2.1 Extremely Rare Events 375
9.6.2.2 The Reason for Error in the MSFF Tail Model 377
9.6.2.3 The Problem 378
9.6.3 A Recursive Formulation of Statistical Blockade 379
9.6.4 Experimental Results 382
Index 387

Erscheint lt. Verlag 21.4.2009
Reihe/Serie Integrated Circuits and Systems
Zusatzinfo 400 p. 110 illus.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Technik Elektrotechnik / Energietechnik
Schlagworte Development • DRAM • Electronics • Embedded DRAMs • Embedded Non-Volatile Memory • Memory Technologies • microprocessor • nano-scale • Nano-Scale VLSIs • Non-volatile Memory • On-Die Memories • RAM • SRAM • SRAMs • VLSI • Zhang
ISBN-10 0-387-88497-1 / 0387884971
ISBN-13 978-0-387-88497-4 / 9780387884974
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 24,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99