Sigma Delta A/D Conversion for Signal Conditioning (eBook)

eBook Download: PDF
2006 | 2006
X, 278 Seiten
Springer Netherlands (Verlag)
978-1-4020-4680-3 (ISBN)

Lese- und Medienproben

Sigma Delta A/D Conversion for Signal Conditioning -  Kathleen Philips,  Arthur H.M. van Roermund
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book gives an overview of the state-of-the-art in SigmaDelta design and of the challenges for future realizations. It provides an understanding of the fundamental power efficiency of SigmaDelta converters. In addition, it presents an analysis of the power consumption in the decimation filter. Understanding these power/performance trade-offs, it becomes clear that straight-forward digitization of a conditioning channel, i.e. exchanging analog for digital conditioning, comes at a major power penalty.



Kathleen Philips was born in 1972, in Aalst, Belgium. In 1992 and in 1995, respectively, she obtained the B. Sc. and the M. Sc. degree in Electrical Engineering from the 'Katholieke Universiteit Leuven' in Belgium. The graduation project was on the design of monolithic microwave ICs based on HEMT-transistors.

In the summer of 1993, she did a traineeship at the IMEC, Belgium, on methodologies to evaluate contamination in IC technology steps.

In September 1995, she started working in the Mixed-signal Circuits and Systems group of the Philips Research Laboratories in Eindhoven, the Netherlands, where she is now a senior research scientist. She respectively worked on the design of D/A converters and class-D amplifiers for audio, sigma delta A/D conversion for FM and AMradio, variable-gain amplifiers, sigma delta design for UMTS and for Bluetooth receivers. Her research interests also include the system-level design of transceivers for wireless communication.

In the fall of 1997, she was seconded to Philips Semiconductors, France, on the topic of PLL design. Another secondment in 2000, to the Philips Research Laboratories in the United Kingdom, involved the study of third-generation mobile receivers and the derivation of circuit specifications.

The author was a lecturer in the Educational Sessions of the IEEE Custom Integrated Circuits Conference in 2003 and 2004. From 2005 on, she also serves in the technical program committee of this conference.


1.1 Background Moore's Law predicts a decrease by a factor of two in the feature size of CMOS te- nology every three years and has been valid for years. It implies a doubling of the - eration speed and a four times higher transistor count per unit of area, every three years. The combination leads to an eight times higher processing capability per unit of area. This on-going miniaturization allows the integration of complex electronic systems with millions of transistors (Very-Large-Scale-Integration) and enables the integration of el- tronic systems. An electronic system A generic picture of an integrated electronic system is shown in ?g. 1.1. The heart of the system is the signal processing core. This core supports a wide variety of functions, such as customization and programmability of multiple applications, channel coding, the de?nition of the user interface, etc. These functions are enabled by DSP, a controller CPU and various blocks of memory. In advanced ICs these blocks provide (almost) all signal processing and usually dominate in the overall power and area consumption of integrated systems. The huge data rates involved, require high-speed busses for communication between these blocks. A power-management unit fuels the system by providing the - propriate supply voltages and currents.

Kathleen Philips was born in 1972, in Aalst, Belgium. In 1992 and in 1995, respectively, she obtained the B. Sc. and the M. Sc. degree in Electrical Engineering from the "Katholieke Universiteit Leuven" in Belgium. The graduation project was on the design of monolithic microwave ICs based on HEMT-transistors. In the summer of 1993, she did a traineeship at the IMEC, Belgium, on methodologies to evaluate contamination in IC technology steps. In September 1995, she started working in the Mixed-signal Circuits and Systems group of the Philips Research Laboratories in Eindhoven, the Netherlands, where she is now a senior research scientist. She respectively worked on the design of D/A converters and class-D amplifiers for audio, sigma delta A/D conversion for FM and AMradio, variable-gain amplifiers, sigma delta design for UMTS and for Bluetooth receivers. Her research interests also include the system-level design of transceivers for wireless communication. In the fall of 1997, she was seconded to Philips Semiconductors, France, on the topic of PLL design. Another secondment in 2000, to the Philips Research Laboratories in the United Kingdom, involved the study of third-generation mobile receivers and the derivation of circuit specifications. The author was a lecturer in the Educational Sessions of the IEEE Custom Integrated Circuits Conference in 2003 and 2004. From 2005 on, she also serves in the technical program committee of this conference.

List of symbols and abbreviations
1 Introduction
1.1 Background
1.1.1 Anelectronicsystem
1.1.2 Digital signalprocessing
1.1.3 Digitizationof signal conditioning
1.1.4 Digitization of inter-die interfaces
1.2 Aim of this thesis
1.3 Scope
1.3.1 BasebandA/Dconditioning channels
1.3.2 Continuous-time single-bit sigma-delta conversion
1.3.3 CMOS technology
1.3.4 Power consumptionas cost parameter
1.3.5 Performance parameters
1.4 Outline
2 The signal conditioning channel
2.1 Generic communication channel
2.2 Performance parameters
2.3 Conventional conditioning channels
2.4 Evolution
2.4.1 Technology advances
2.4.2 Systemdemands
2.4.3 Advances in digital signal processing and analog circuit design
2.4.4 Digitizationof the architecture
2.5 Nomenclature
2.6 Conclusions
3 Sigma delta A/D conversion
3.1 Historical overview
3.2 State-of-the-art in sigma delta A/D conversion
3.2.1 Architectural considerations
3.2.2 Implementation aspects
3.2.3 Performance metrics for sigma delta ADCs
3.3 sigma delta ADCs infuture conditioning channels
3.3.1 The Shannon theorem and sigma delta based signal conditioning
3.3.2 Comparison of Nyquist and sigma delta based signal conditioning
3.3.3 Survey of published power/performance values
3.4 Limitations of sigma delta A/D conversion
3.4.1 Linear limitations
3.4.2 Non-linear limitations
3.5 Conclusions
4 Power consumption in channel building blocks
4.1 Literature on power/performance analysis
4.2 Figures-of-merit
4.2.1 FOM related to thermal noise
4.2.2 FOMincluding distortion
4.2.3 FOM related to signal resolution
4.3 Power consumption in analog conditioning circuits
4.3.1 Power/performance relations
4.3.2 Discussion
4.4 Power consumption in a sigma delta ADC
4.4.1 Power/performance relations
4.4.2 Discussion
4.5 Power consumption in digital conditioning circuits
4.5.1 Filter functions
4.5.2 Power/performancerelations
4.5.3 Discussion
4.6 Comparison
4.7 Conclusions
5 Full-analog and full-digital conditioning channels
5.1 Full-analog conditioning channel
5.1.1 The conditioning channel
5.2 Full-digital conditioning channel
5.2.1 The conditioning channel
5.2.2 Power/performance analysis
5.3 Conclusions
6 Conditioning sigma delta ADCs
6.1 Generic conditioning sigma delta ADC
6.1.1 Conceptofoperation
6.1.2 Universal model of a sigma delta modulator
6.1.3 Interferer immunity
6.1.4 Power/performance analysis
6.2 Signal conditioning in the decimation filter
6.2.1 Interferer immunity
6.2.2 The conditioning channel
6.2.3 Power/performance analysis
6.3 Signal conditioning with a restricted filtering STF
6.3.1 Interferer immunity
6.3.2 The conditioning channel
6.3.3 Power/performance analysis
6.3.4 Conditioning hybrid sigma delta ADC
6.4 Signal conditioningbyunrestrictedSTFdesign
6.4.1 Interferer immunity
6.4.2 The conditioningchannel
6.4.3 Power/performanceanalysis
6.5 Comparisonof conditioningADCs
6.5.1 Comparison of topologies
6.5.2 Flexibility
6.5.3 Power consumption
6.5.4 Guidelines
6.6 Conclusions
7 Digitization of the inter-die interface
7.1 Considerations
7.2 Power inthe interface
7.2.1 Analoginterface
7.2.2 Digital interface after decimation
7.2.3 Digital interface before decimation
7.2.4 Comparison
7.3 Application to the conditioning channels
7.4 Conclusions
8 Highly analog and highly digital channels for FM/AM radio
8.1 System
8.1.1 Conventional radio with analog demodulation
8.1.2 Radio with digital demodulation
8.2 VGAdesign
8.2.1 HighlylinearVGAdesign
8.2.2 Evaluation
8.3 ADCdesign
8.3.1 Conventionalsolutions
8.3.2 sigma delta ADC with integrated passive mixer
8.3.3 Evaluation
8.4 Evaluationof the channel
8.4.1 Discussion
8.4.2 Benchmark
8.5 Conclusions
9 Conditioning sigma delta ADCs for Bluetooth
9.1 System
9.1.1 Conventional radio with analog demodulation
9.1.2 Radio with digital demodulation and analog signal-conditioning
9.1.3 Radio with digital demodulation, without analog signal conditioning
9.2 Feed forward sigma delta ADC
9.2.1 Design
9.2.2 Evaluation
9.3 Conditioning feedback sigma deltaADC
9.3.1 Design
9.3.2 Evaluation
9.4 FFB-ADC
9.4.1 Design
9.4.2 Evaluation
9.5 Evaluationof the channels
9.5.1 Benchmark with published ADCs
9.5.2 Comparison of the presented ADCs
9.5.3 Benchmark with published Bluetooth conditioning channels
9.6 Conclusions
10 General conclusions
A Overview of published sigma delta ADCs
B Power/performance relation of analog circuits
B.1 Simple differential pair
B.2 Differentialpair in aglobal feed-back configuration
B.3 Degenerated differential pair
C Power/performance relation of digital filters
C.1 Analysis of the filter topology
C.2 Calculation of filter parameters
C.3 Calculation of powerc onsumption
C.4 Extensionto other implementations
D Third-order distortion in analog circuits and sigma delta ADCs
E Power consumption in a data interface.
E.1 Analogdata interface.
E.2 Digital data interface
References
Original contributions
List of publications
Summary
Samenvatting
Dankwoord
Biography

Erscheint lt. Verlag 5.5.2006
Reihe/Serie The Springer International Series in Engineering and Computer Science
Zusatzinfo X, 278 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte A/D conversion • Bluetooth • CMOS • Communication • consumption • Continuous-time • Filter • Integrated circuit • Receiver • Sigma-delta • signal conditioning • single-electron transistor
ISBN-10 1-4020-4680-4 / 1402046804
ISBN-13 978-1-4020-4680-3 / 9781402046803
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99