Für diesen Artikel ist leider kein Bild verfügbar.

AC Electric Motors Control – Advanced Design Techniques and Applications

Fouad Giri (Herausgeber)

Software / Digital Media
584 Seiten
2013
John Wiley & Sons Inc (Hersteller)
978-1-118-57426-3 (ISBN)
130,07 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Recent advances in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control design methods to a variety of AC motors.
The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means.
Other key features: * Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors * Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more * Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source referenceon AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.

Fouad Giri, Universite de Caen Basse-Normandie, France Dr. Giri is currently Distinguished Professor at the University of Caen Basse-Normandie, France. Professor Giri is an Associate Editor of the IFAC Journal Control Engineering Practice and IEEE Transactions on Control Systems Technology. He is Vice-Chair of the IFAC Technical Committee TC1.2 (Adaptive and Learning Systems) and General Chair of 11th IFAC Workshops on Adaptation and Learning in Control and Signal Processing (ALCOSP 2013), Caen, France; and the 4th IFAC Workshop on Periodic System Control (PSYCO 3013.

List of Contributors xvii Preface xxi 1 Introduction to AC Motor Control 1 Marc Bodson and Fouad Giri 1.1 AC Motor Features 1 1.2 Control Issues 3 1.2.1 State-Feedback Speed Control 3 1.2.2 Adaptive Output-Feedback Speed Control 3 1.2.3 Fault Detection and Isolation, Fault-Tolerant Control 4 1.2.4 Speed Control with Optimized Flux 6 1.2.5 Power Factor Correction 7 1.3 Book Overview 8 1.3.1 Control Models for AC Motors 9 1.3.2 Observer Design Techniques for AC Motors 9 1.3.3 Control Design Techniques for Induction Motors 10 1.3.4 Control Design Techniques for Synchronous Motors 11 1.3.5 Industrial Applications of AC Motors Control 12 References 13 Part One Control Models for AC Motors 2 Control Models for Induction Motors 17 Abderrahim El Fadili, Fouad Giri, and Abdelmounime El Magri 2.1 Introduction 17 2.2 Induction Motors--A Concise Description 18 2.3 Triphase Induction Motor Modeling 20 2.3.1 Modeling Assumptions 20 2.3.2 Triphase Induction Motor Modeling 20 2.3.3 Park Transformations 22 2.3.4 Two-Phase Models of Induction Motors 26 2.3.5 Doubly-Fed Induction Motor Model 31 2.4 Identification of Induction Motor Parameters 32 2.4.1 Identification of Mechanical Parameters 32 2.4.2 Identification of Electrical Parameters 35 2.5 Conclusions 39 References 39 3 Control Models for Synchronous Machines 41 Abdelmounime El Magri, Fouad Giri, and Abderrahim El Fadili 3.1 Introduction 41 3.2 Synchronous Machine Structures 42 3.3 Preliminaries 43 3.3.1 Modeling Assumptions 43 3.3.2 Three-Phase to Bi-Phase Transformations 44 3.3.3 Concordia-Park Transformation (alphabeta to dq) 45 3.4 Dynamic Modeling of Wound-Rotor Synchronous Motors 45 3.4.1 Oriented dq-Frame Model of Salient Pole WRSM 48 3.5 Permanent-Magnet Synchronous Machine Modeling 50 3.5.1 PMSM Modeling in abc-Coordinates 50 3.5.2 PMSM Model in the Rotating dq-Frame 51 3.5.3 PMSM Model in the Fixed Bi-Phase alphabeta-Frame 54 3.6 Conclusions 55 References 56 Part Two Observer Design Techniques for AC Motors 4 State Observers for Estimation Problems in Induction Motors 59 Gildas Besanc¸on and Alexandru T¸ iclea 4.1 Introduction 59 4.2 Motor Representation and Estimation Issues 60 4.2.1 Problem Statement 60 4.2.2 Short Literature Review 61 4.3 Some Observer Approaches 63 4.3.1 Estimation under known and constant speed and Parameters 63 4.3.2 Estimation under known Speed and Parameters 64 4.3.3 Estimation under unknown Speed and known Parameters 64 4.3.4 Estimation in the presence of unknown Speed and/or Parameters 66 4.4 Some Illustration Results 66 4.4.1 State and Parameter Estimation under known Speed 68 4.4.2 State and Speed Estimation under known Parameters 69 4.4.3 State, Parameter, and Speed Estimation 71 4.4.4 Estimation close to Unobservability 74 4.5 Conclusions 75 References 76 5 State Observers for Active Disturbance Rejection in Induction Motor Control 78 Hebertt Sira Ram'?Yrez, Felipe Gonz'alez Monta˜nez, John Cort'es Romero, and Alberto Luviano-Ju'arez 5.1 Introduction 78 5.2 A Two-Stage ADR Controller Design for the Induction Motor 80 5.2.1 The Flux Simulator 80 5.2.2 Formulation of the Problem and Background Results 81 5.2.3 Assumptions 81 5.2.4 Problem Formulation 81 5.2.5 Control Strategy 82 5.2.6 Experimental Results 86 5.3 Field-Oriented ADR Armature Voltage Control 90 5.3.1 Control Decoupling Property of the Induction Motor System 91 5.3.2 Problem Formulation 92 5.3.3 Control Strategy 92 5.3.4 Experimental Results 95 5.A Appendix 99 5.A.1 Generalities on Ultra-Models and Observer-Based Active Disturbance Rejection Control 99 5.A.2 Assumptions 99 5.A.3 Observing the uncertain System through the Ultra-Model 101 5.A.4 The Observer-Based Active Disturbance Rejection Controller 102 References 103 6 Observers Design for Systems with Sampled Measurements, Application to AC Motors 105 Vincent Van Assche Philippe Dorl'eans Jean-Franc¸ois Massieu and Tarek Ahmed-Ali 6.1 Introduction 105 6.2 Nomenclature 106 6.3 Observer Design 107 6.3.1 Nonlinear System Model 107 6.3.2 Observer Design with a Time-Delay Approach 108 6.3.3 Observer Design with an Output Predictor 113 6.4 Application to the AC Motor 114 6.4.1 Model of the AC Motor 114 6.4.2 Observer for AC Machine with Sampled and Held Measurements 117 6.4.3 Observer for the AC Machine with Predictor 118 6.4.4 Simulation 119 6.5 Conclusions 121 References 121 7 Experimental Evaluation of Observer Design Technique for Synchronous Motor 123 Malek Ghanes and Xuefang Lin Shi 7.1 Introduction 123 7.1.1 Problem Statement 123 7.1.2 State of the Art and Objectives 124 7.2 SPMSM Modeling and its Observability 125 7.2.1 SPMSM Model 125 7.2.2 Quick Review on the Observability of SPMSM 125 7.3 Robust MRAS Observer 125 7.3.1 Reference Model 125 7.3.2 Adjustable Model 127 7.3.3 Adaptation Mechanism 128 7.3.4 Rotor Position Observer 129 7.4 Experimental Results 129 7.4.1 Nominal Conditions 130 7.4.2 Parameter Variation Effect 132 7.4.3 Load Torque Effect 133 7.5 Conclusions 133 References 134 Part Three Control Design Techniques for Induction Motors 8 High-Gain Observers in Robust Feedback Control of Induction Motors 139 Hassan K. Khalil and Elias G. Strangas 8.1 Chapter Overview 139 8.2 Field Orientation 140 8.3 High-Gain Observers 144 8.4 Speed and Acceleration Estimation using High-Gain Observers 146 8.4.1 Speed Estimation using a Mechanical Sensor 146 8.4.2 Speed and Acceleration Estimation using a Mechanical Sensor 147 8.4.3 Speed Estimation without a Mechanical Sensor 147 8.5 Flux Control 149 8.6 Speed Control with Mechanical Sensor 151 8.7 Speed Control without Mechanical Sensor 153 8.8 Simulation and Experimental Results 156 8.9 Conclusions 157 References 157 9 Adaptive Output Feedback Control of Induction Motors 158 Riccardo Marino, Patrizio Tomei, and Cristiano Maria Verrelli 9.1 Introduction 158 9.2 Problem Statement 159 9.3 Nonlinear Estimation and Tracking Control for Sensorless Induction Motors 161 9.3.1 Estimation and Tracking Control Algorithm 162 9.3.2 Stability Analysis 164 9.4 Nonlinear Estimation and Tracking Control for the Output Feedback Case 175 9.4.1 Estimation and Tracking Control Algorithm 175 9.4.2 Stability Proof 175 9.5 Simulation Results 176 9.5.1 Sensorless Case 177 9.5.2 Output Feedback Case 180 9.6 Conclusions 186 References 186 10 Nonlinear Control for Speed Regulation of Induction Motor with Optimal Energetic Efficiency 188 Abderrahim El Fadili, Abdelmounime El Magri, Hamid Ouadi, and Fouad Giri 10.1 Introduction 188 10.2 Induction Motor Modeling with Saturation Effect Inclusion 190 10.3 Controller Design 194 10.3.1 Control Objective 194 10.3.2 Rotor Flux Reference Optimization 194 10.3.3 Speed and Flux Control Design and Analysis 197 10.4 Simulation 202 10.5 Conclusions 205 References 205 11 Experimental Evaluation of Nonlinear Control Design Techniques for Sensorless Induction Motor 207 Jes'us De Le'on, Alain Glumineau, Dramane Traore, and Robert Boisliveau 11.1 Introduction 207 11.2 Problem Formulation 208 11.2.1 Control and Observation Problem 209 11.3 Robust Integral Backstepping 209 11.3.1 Controller Design using an Integral Backstepping Method 209 11.4 High-Order Sliding-Mode Control 212 11.4.1 Switching Vector 214 11.4.2 Discontinuous Input 215 11.5 Adaptive Interconnected Observers Design 215 11.6 Experimental Results 218 11.6.1 Integral Backstepping Control and Adaptive Observer 221 11.6.2 High-Order Sliding-Mode Control and Adaptive Observer 224 11.7 Robust Nonlinear Controllers Comparison 228 11.7.1 High-Order Sliding-Mode Control 229 11.7.2 Integral Backstepping Control 230 11.7.3 Experimental Results: Comparison 230 11.8 Conclusions 231 References 231 12 Multiphase Induction Motor Control 233 Roberto Zanasi and Giovanni Azzone 12.1 Introduction 233 12.2 Power-Oriented Graphs 234 12.2.1 Notations 235 12.3 Multiphase Induction Motor Complex Dynamic Modeling 236 12.3.1 Hypothesis for the Induction Motor Modeling 236 12.3.2 Complex Dynamic Modeling of the Induction Motor 237 12.4 Multiphase Indirect Field-Oriented Control with Harmonic Injection 243 12.4.1 Five-Phase Indirect Rotor Field-Oriented Control 245 12.4.2 Five-Phase IRFOC Simulation Results 247 12.5 Conclusions 251 References 251 13 Backstepping Controller for DFIM with Bidirectional AC/DC/AC Converter 253 Abderrahim El Fadili, Vincent Van Assche, Abdelmounime El Magri, and Fouad Giri 13.1 Introduction 253 13.2 Modeling "AC/DC/AC Converter--Doubly-Fed Induction Motor" Association 255 13.2.1 Doubly-Fed Induction Motor Model 255 13.2.2 Modeling of the System "DC/AC Inverter--DFIM" 257 13.2.3 AC/DC Rectifier Modeling 257 13.3 Controller Design 260 13.3.1 Control Objectives 260 13.3.2 Motor Speed and Stator Flux Norm Regulation 260 13.3.3 Power Factor Correction and DC Voltage Controller 266 13.4 Simulation Results 269 13.5 Conclusions 273 References 273 14 Fault Detection in Induction Motors 275 Alessandro Pilloni, Alessandro Pisano, Martin Riera-Guasp, Ruben Puche-Panadero, and Manuel Pineda-Sanchez 14.1 Introduction 275 14.2 Description and Classification of IMs Faults 276 14.2.1 Electrical Faults 276 14.2.2 Mechanical Faults 277 14.3 Model-Based FDI in IMs 280 14.3.1 Introduction 280 14.3.2 Modeling of IMs with Faults 281 14.3.3 Fault Detection Observer Design for IMs 282 14.3.4 Residual Generation and Evaluation 282 14.3.5 Experimental Results 284 14.4 Classical MCSA Based on the Fast Fourier Transform 287 14.5 Hilbert Transform 289 14.5.1 Bases of the Application of the Hilbert Transform of a Phase Current to the Diagnosis of Electrical Machines 289 14.5.2 Experimental Results 291 14.6 Discrete Wavelet Transform Approach 292 14.6.1 Basis for the Application of the DWT to Diagnostic of Electrical Machines 292 14.6.2 Application of the DWT to the Analysis of the Start-up Current of a Healthy Motor 295 14.6.3 Application of the DWT to the Analysis of the Start-up Current of a Motor with a Broken Bar in the Rotor 297 14.6.4 Diagnosis of a Machine with Mixed Eccentricity through the Start-up Current 297 14.7 Continuous Wavelet Transform Approach 298 14.7.1 Application of the CWT to Diagnostic of Electrical Machines 298 14.7.2 Application of the Complex CWT to Diagnostic of Electrical Machines 300 14.7.3 Experimental Results 300 14.8 Wigner-Ville Distribution Approach 300 14.8.1 Basis for the Application of the WVD to Diagnostic of Electrical Machines 300 14.8.2 Application of the WVD to Monocomponent Signals 302 14.8.3 Application of the WVD to Multicomponent Signals 303 14.9 Instantaneous Frequency Approach 304 14.9.1 Basis for the Application of the IF Approach to Diagnostic of Electrical Machines 304 14.9.2 Calculating the IF of a Monocomponent Signal 305 14.9.3 Practical Application of the IF Approach 306 References 307 Part Four Control Design Techniques for Synchronous Motors 15 Sensorless Speed Control of PMSM 313 Dhruv Shah, Gerardo Espinosa--P'erez, Romeo Ortega, and Micha¨el Hilairet 15.1 Introduction 313 15.2 PMSM Models and Problem Formulation 314 15.2.1 Problem Formulation 316 15.3 Controller Structure and Main Result 316 15.4 Unavailability of a Linearization-Based Design 318 15.5 Full Information Control 319 15.5.1 Port-Hamiltonian Model 319 15.5.2 A Full-Information IDA-PBC 320 15.5.3 Certainty Equivalent Sensorless Controller 322 15.6 Position Observer of Ortega et al. (2011) 322 15.6.1 Flux Observer and Stability Properties 322 15.6.2 Description of the Observer in Terms of rhoalphabeta 323 15.7 An I&I Speed and Load Torque Observer 324 15.8 Proof of the Main Result 328 15.8.1 Currents and Speed Tracking Errors 328 15.8.2 Estimation Error for rhoalphabeta 330 15.8.3 Speed and Load Torque Estimation Errors 330 15.8.4 Proof of Proposition 15.3.1 331 15.9 Simulation and Experimental Results 332 15.9.1 Simulation Results 332 15.9.2 Experimental Results 337 15.10 Future Research 337 15.A Appendix 339 References 340 16 Adaptive Output-Feedback Control of Permanent-Magnet Synchronous Motors 341 Patrizio Tomei and Cristiano Maria Verrelli 16.1 Introduction 341 16.2 Dynamic Model and Problem Statement 343 16.3 Nonlinear Adaptive Control 344 16.4 Preliminary Result (Tomei and Verrelli 2008) 347 16.5 Main Result (Tomei and Verrelli 2011) 353 16.6 Simulation Results (Bifaretti et al. 2012) 357 16.6.1 Response to Time-Varying Load Torque 357 16.6.2 Response to Parameter Uncertainties 360 16.7 Experimental Setup and Results (Bifaretti et al. 2012) 364 16.8 Conclusions 367 References 368 17 Robust Fault Detection for a Permanent-Magnet Synchronous Motor Using a Nonlinear Observer 370 Maria Letizia Corradini, Gianluca Ippoliti, and Giuseppe Orlando 17.1 Introduction 370 17.2 Preliminaries 371 17.2.1 PMSM Modeling 371 17.3 Control Design 372 17.3.1 A Robust Observer of Rotor Angular Position and Velocity for the Tracking Problem 372 17.4 The Faulty Case 375 17.5 Simulation Tests 376 References 380 18 On Digitization of Variable Structure Control for Permanent Magnet Synchronous Motors 381 Yong Feng, Xinghuo Yu, and Fengling Han 18.1 Introduction 381 18.2 Control System of PMSM 382 18.3 Dynamic Model of PMSM 383 18.4 PI Control of PMSM Servo System 384 18.5 High-Order Terminal Sliding-Mode Control of PMSM Servo System 385 18.5.1 Velocity Controller Design 386 18.5.2 q-Axis Current Controller Design 386 18.5.3 d-Axis Current Controller Design 387 18.5.4 Simulations 387 18.6 Sliding-Mode-Based Mechanical Resonance Suppressing Method 388 18.6.1 Load Speed Controller Design 390 18.6.2 d-Axis Current Controller Design 391 18.6.3 q-Axis Current Controller Design 391 18.6.4 Simulations 392 18.7 Digitization of TSM Controllers of PMSM Servo System 393 18.7.1 Backward Difference Discretization Method 393 18.7.2 Bilinear Transformation 393 18.8 Conclusions 396 References 396 19 Control of Interior Permanent Magnet Synchronous Machines 398 Faz Rahman and Rukmi Dutta 19.1 Introduction 398 19.2 IPM Synchronous Machine Model 401 19.2.1 Torque-Speed Characteristics in the Steady State 403 19.2.2 Optimum Control Trajectories for IPM Synchronous Machines in the Rotor Reference Frame 405 19.3 Optimum Control Trajectories 408 19.3.1 The MTPA Trajectory 408 19.3.2 The Field-Weakening (Constant-Power) Trajectory 409 19.3.3 Implementation Issues of Current Vector Controlled IPMSM Drive 410 19.4 Sensorless Direct Torque Control of IPM Synchronous Machines 412 19.4.1 Control of the Amplitude and Rotation of the Stator Flux Linkage Vector 414 19.4.2 Optimum Control Trajectories with DTC 416 19.4.3 Implementation of Trajectory Control for DTC 419 19.5 Sensorless DTC with Closed-Loop Flux Estimation 420 19.6 Sensorless Operation at Very Low Speed with High-Frequency Injection 423 19.7 Conclusions 426 References 427 20 Nonlinear State-Feedback Control of Three-Phase Wound Rotor Synchronous Motors 429 Abdelmounime El Magri, Vincent Van Assche, Abderrahim El Fadili, Fatima-Zahra Chaoui, and Fouad Giri 20.1 Introduction 429 20.2 System Modeling 431 20.2.1 Three-Phases AC/DC Rectifier Modeling 431 20.2.2 Inverter-Motor Subsystem Modeling 433 20.3 Nonlinear Adaptive Controller Design 435 20.3.1 Control Objectives 435 20.3.2 Inverter-Motor Subsystem Control Design 436 20.3.3 Reactive Power and DC Voltage Controller 443 20.4 Simulation 446 20.4.1 Simulation and Implementation Considerations 446 20.4.2 Simulation Results 448 20.5 Conclusion 450 References 450 Part Five Industrial Applications of AC Motors Control 21 AC Motor Control Applications in Vehicle Traction 455 Faz Rahman and Rukmi Dutta 21.1 Introduction 455 21.1.1 Electromechanical Requirements for Traction Drives in the Steady-State 460 21.1.2 The Impact of CPSR on Motor Power Rating and Acceleration Time of a Vehicle 463 21.2 Machines and Associated Control for Traction Applications 464 21.2.1 Induction Machines 465 21.2.2 Interior Permanent Magnet Synchronous Machines 471 21.2.3 Switched Reluctance Machines 473 21.3 Power Converters for AC Electric Traction Drives 475 21.4 Control Issues for Traction Drives 478 21.4.1 Torque and Slip-Speed Ratio Control 478 21.4.2 Control of Regenerative Braking 480 21.5 Conclusions 485 References 486 22 Induction Motor Control Application in High-Speed Train Electric Drive 487 Jarosaw Guzi'nski, Zbigniew Krzeminski, Arkadiusz Lewicki, Haitham Abu-Rub, and Marc Diguet 22.1 Introduction 487 22.2 Description of the High-Speed Train Traction System 488 22.2.1 Induction Motor 490 22.2.2 Torque Transmission System 491 22.2.3 High-Power Electronic Converter 493 22.2.4 Motor Control Principle 494 22.3 Estimation Methods 494 22.3.1 Speed Observer 494 22.3.2 Motor Torque Estimation 496 22.4 Simulation Investigations 497 22.5 Experimental Test Bench 497 22.6 Experimental Investigations 501 22.7 Diagnosis System Principles 503 22.7.1 Diagnosis of Speed Sensor 504 22.7.2 Diagnosis of Traction Torque Transmission 505 22.8 Summary and Perspectives 505 References 506 23 AC Motor Control Applications in High-Power Industrial Drives 509 Ajit K. Chattopadhyay 23.1 Introduction 509 23.2 High-Power Semiconductor Devices 510 23.2.1 High-Power SCR 511 23.2.2 High-Power GTO 511 23.2.3 IGCT/GCT 513 23.2.4 IGBT 514 23.2.5 IEGT 514 23.3 High-Power Converters for AC Drives and Control Methods 515 23.3.1 Pulse Width Modulation for Converters 516 23.3.2 Control Methods of High-Power Converter-Fed Drives 516 23.4 Control of Induction Motor Drives 517 23.4.1 Induction Motor Drives with Scalar or Volts/Hz Control 517 23.4.2 Induction Motor Drives with Vector Control 527 23.4.3 Induction Motor Drives with Direct Torque Control (DTC) 531 23.5 Control of Synchronous Motor Drives 534 23.5.1 Synchronous Motor Drives with Scalar Control 534 23.5.2 Synchronous Motor Drives with Vector Control 537 23.6 Application Examples of Control of High-Power AC Drives 539 23.6.1 Steel Mills 539 23.6.2 Cement and Ore Grinding Mills 544 23.6.3 Ship Drive and Marine Electric Propulsion 544 23.6.4 Mine Hoists, Winders, and Draglines 546 23.6.5 Pumps, Fans and Compressors in the Industry 547 23.7 New Developments and Future Trends 548 23.8 Conclusions 548 References 549 Index 553

Verlagsort New York
Sprache englisch
Maße 150 x 250 mm
Gewicht 666 g
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-118-57426-5 / 1118574265
ISBN-13 978-1-118-57426-3 / 9781118574263
Zustand Neuware
Haben Sie eine Frage zum Produkt?