Novel Aspects of Diamond (eBook)

From Growth to Applications

Nianjun Yang (Herausgeber)

eBook Download: PDF
2019 | 2nd ed. 2019
XXV, 507 Seiten
Springer International Publishing (Verlag)
978-3-030-12469-4 (ISBN)

Lese- und Medienproben

Novel Aspects of Diamond -
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is in honor of the contribution of Professor Xin Jiang (Institute of Materials Engineering, University of Siegen, Germany) to diamond. The objective of this book is to familiarize readers with the scientific and engineering aspects of CVD diamond films and to provide experienced researchers, scientists, and engineers in academia and industry with the latest developments and achievements in this rapidly growing field. This 2nd edition consists of 14 chapters, providing an updated, systematic review of diamond research, ranging from its growth, and properties up to applications. The growth of single-crystalline and doped diamond films is included. The physical, chemical, and engineering properties of these films and diamond nanoparticles are discussed from theoretical and experimental aspects. The applications of various diamond films and nanoparticles in the fields of chemistry, biology, medicine, physics, and engineering are presented.



Dr. Nianjun Yang is working as a senior scientist and the leader of the Nanomaterials group at the Institute of Materials Engineering, University of Siegen, Germany. He worked as the group leader of Biosensor team at the Fraunhofer Institute for Applied Solid State Physics (IAF) Germany from 2008 to 2014, as an invited researcher at the National Institute of Advanced Industrial Science and Technology (AIST) Japan from 2006 to 2008 and as a postdoctoral researcher at New Mexico State University, USA from 2005 to 2006. He received his PhD from the University of Fukui, Japan in 2005. His current research interests cover CVD growth of carbon and related materials as well as their applications for electrochemistry, biointerfaces, and sustainable chemistry. He has published more than 130 papers in peer-reviewed journals, edited 1 book series, 4 books, contributed 10 book chapters, and delivered 40 invited talks and 60 oral presentations at international conferences. He has been a program member of Hasselt Diamond Workshop since 2013 and the International conference of Diamond and Related Materials since 2014 as well as Nanodiamond and New Carbon (NDNC) in 2016. He is a guest-editor of nine journals (e.g., Small, Nanoscale, ACS Applied Materials and Interfaces, Carbon, Diamond and Related Materials, Electroanalysis, Journal of Electroanalytical Chemistry, and Physica Status Solidi A ), and an advisory member of the journals of Diamond and Related Materials as well as Scientific Reports. He has organized various 10 times carbon-related symposia at E-MRS Spring and Fall Meetings.

Dr. Nianjun Yang is working as a senior scientist and the leader of the Nanomaterials group at the Institute of Materials Engineering, University of Siegen, Germany. He worked as the group leader of Biosensor team at the Fraunhofer Institute for Applied Solid State Physics (IAF) Germany from 2008 to 2014, as an invited researcher at the National Institute of Advanced Industrial Science and Technology (AIST) Japan from 2006 to 2008 and as a postdoctoral researcher at New Mexico State University, USA from 2005 to 2006. He received his PhD from the University of Fukui, Japan in 2005. His current research interests cover CVD growth of carbon and related materials as well as their applications for electrochemistry, biointerfaces, and sustainable chemistry. He has published more than 130 papers in peer-reviewed journals, edited 1 book series, 4 books, contributed 10 book chapters, and delivered 40 invited talks and 60 oral presentations at international conferences. He has been a program member of Hasselt Diamond Workshop since 2013 and the International conference of Diamond and Related Materials since 2014 as well as Nanodiamond and New Carbon (NDNC) in 2016. He is a guest-editor of nine journals (e.g., Small, Nanoscale, ACS Applied Materials and Interfaces, Carbon, Diamond and Related Materials, Electroanalysis, Journal of Electroanalytical Chemistry, and Physica Status Solidi A ), and an advisory member of the journals of Diamond and Related Materials as well as Scientific Reports. He has organized various 10 times carbon-related symposia at E-MRS Spring and Fall Meetings.

Dedication to Xin Jiang 7
Preface 11
About This Book 13
Contents 14
Contributors 22
1 Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition 25
Abstract 25
1.1 Introduction 25
1.2 Growth Mechanism 27
1.2.1 Hydrogen 27
1.2.2 Carbon 28
1.3 Growth Modes 30
1.4 Doping 32
1.5 Growth of Atomically Flat Diamond 34
1.5.1 Hillock-Free Surfaces 35
1.5.2 Step/Terrace Structures 38
1.5.3 Atomically Step-Free Surfaces 39
1.6 Conclusions 43
Acknowledgements 43
References 44
2 The Effect of Dopants on Diamond Surface Properties and Growth 54
Abstract 54
2.1 Introduction 54
2.2 Methods and Methodologies 55
2.3 General 56
2.3.1 Diamond Doping Using Nitrogen, Phosphorous, Sulphur or Boron 56
2.3.1.1 N-type Doping Using Nitrogen 56
2.3.1.2 N-type Doping Using Phosphorous or Sulphur 57
2.3.1.3 P-Type Doping Using Boron 58
2.3.2 Growth Mechanism 58
2.3.3 H Abstraction Rates for Growth of Non-doped Diamond 59
2.4 Nitrogen-Induced Effect on Diamond Growth 61
2.4.1 Introduction 61
2.4.2 N Substitutionally Positioned into Various C Atomic Layers 63
2.4.3 N Substitutionally Positioned Within the C Atomic Layer 2 64
2.4.4 N Chemisorbed onto the Surface in the Form NH or NH2 64
2.5 Phosphorous- or Sulfur-Induced Effect on Diamond Growth 66
2.5.1 Introduction 66
2.5.2 Thermodynamics—H Abstraction Energies 66
2.5.3 Kinetics—H Abstraction Barriers 67
2.6 Boron-Induced Effect on Diamond Growth 68
2.6.1 Introduction 68
2.6.2 Thermodynamics—H Abstraction Energies 69
2.6.3 Kinetics—H Abstraction Barriers 69
2.7 Summary 71
Acknowledgements 72
References 72
3 Chemical Mechanical Polishing of Nanocrystalline Diamond 76
Abstract 76
3.1 Introduction 76
3.2 Method for Chemical Mechanical Polishing of Diamond 78
3.3 Chemical Mechanical Polishing of Diamond 79
3.3.1 Polishing of Nanocrystalline Diamond Films 80
3.3.2 Polishing of Single Crystal Diamond 83
3.3.3 Polishing with Ceria and Alumina 87
3.3.4 Abrasive Particle Size Dependence of Polishing 94
3.3.5 Effect of Redox Agents on the CMP of NCD Films 96
3.3.6 Possible Mechanism for Polishing 101
3.4 CMP of Superconducting NCD Thin Films 105
3.5 Conclusion 107
Acknowledgements 108
References 108
4 Single Crystal Diamond Micromechanical and Nanomechanical Resonators 113
Abstract 113
4.1 Introduction 113
4.1.1 Background of MEMS 113
4.1.2 Diamond for MEMS/NEMS 115
4.2 Fabrication of Single Crystal Diamond Mechanical Resonators 117
4.3 Structure of SCD Mechanical Resonators Fabricated by IAL Method 122
4.4 Nanoindentation of SCD Resonators 124
4.5 Mechanical Resonance Properties of SCD Mechanical Resonators 127
4.5.1 Resonance Frequency of the SCD Mechanical Resonators 128
4.5.2 Energy Dissipation in SCD Cantilevers and Quality Factor 131
4.5.3 Strategies Toward High Quality-Factors 135
4.6 Summary and Outlook 140
Acknowledgements 141
References 141
5 Nitrogen Incorporated (Ultra)Nanocrystalline Diamond Films for Field Electron Emission Applications 144
Abstract 144
5.1 Introduction 144
5.2 Nitrogen in Diamond 147
5.3 Nitrogen Ion Implanted UNCD Films 149
5.4 In situ Doping Using N2 in a CH4/H2 Plasma 152
5.5 Doping Using N2 in a CH4/Ar Plasma 154
5.6 Diamond Nanowire Films from a CH4/N2 Plasma 156
5.6.1 Substrate Temperature Effect 156
5.6.2 Localized Electron Emission 161
5.6.3 Hydrogen Treatment Effect 162
5.7 Bias-Enhanced Grown N-UNCD Films 164
5.8 Nanostructured Nitrogen Doped Diamond 167
5.8.1 Vertically Aligned Diamond Nanorods 167
5.8.2 Flexible N-UNCD Pyramidal Microtips 169
5.9 Nitrogen Doped Diamond-Based Heterostructures 170
5.9.1 N-UNCD Coated ZnO Core–Shell Heterostructured Nanorods 171
5.9.2 Combination of N-UNCD Films and CNTs 172
5.9.3 N-NCD-Graphene Hybrids 173
5.9.4 Hexagonal Boron Nitride Nanowalls-N-NCD Heterostructures 174
5.10 Plasma Illumination Cathodic Device 176
5.11 Conclusions 178
Acknowledgements 178
References 179
6 Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes 193
Abstract 193
6.1 Introduction 193
6.2 BDD Features in Aqueous and Non-aqueous Media 195
6.3 Cathodic Synthesis on BDD Electrodes 197
6.3.1 Electrochemical Approaches for Reducing CO2 197
6.3.1.1 Electrochemical Reduction of CO2 198
6.3.1.2 Electrocatalytic Reduction of CO2 on Metal Nanoparticles, Metal Oxides and Metal Complexes Using BBD Support Material 200
6.3.2 Reduction of Oximes 203
6.3.3 Reduction of Nitro Arenes 204
6.3.4 Reductive Carboxylation 205
6.3.5 Reductive Dimerization 206
6.4 Anodic Transformations on BDD Electrodes 207
6.4.1 Electrochemical C–H Amination 207
6.4.2 Clean Electrosynthesis 211
6.5 Conclusions 212
Acknowledgements 213
References 213
7 Diamond Films as Support for Electrochemical Systems for Energy Conversion and Storage 218
Abstract 218
7.1 Introduction 218
7.2 Modification Procedures of BDD Surfaces 219
7.3 Modified BDD Films as Electrocatalytic Surfaces for Fuel Cells 223
7.4 BDD-Electrochemical Capacitors 229
7.5 New Trends in Electrochemical Energy Conversion and Storage 231
7.5.1 Modification of BDD Surfaces for Fuel Cells 231
7.5.2 BDD Electrodes as Supercapacitors 234
7.6 Conclusions 236
Acknowledgements 236
References 236
8 Diamond Electrochemical Devices 242
Abstract 242
8.1 Introduction 242
8.2 Diamond Microelectrodes and Ultramicroelectrodes 244
8.2.1 Fabrication 244
8.2.2 Characterization 245
8.2.3 Applications 247
8.3 Diamond Microelectrode Arrays and Ultramicroelectrode Arrays 250
8.3.1 Fabrication 250
8.3.2 Characterization 252
8.3.3 Applications 255
8.4 Diamond Nanoelectrode Arrays 256
8.4.1 Fabrication 256
8.4.2 Characterization 259
8.4.3 Applications 263
8.5 Scanning Tunneling Microscopy Tips 263
8.6 Summary and Outlook 265
Acknowledgements 266
References 266
9 Nanoparticle-Based Diamond Electrodes 276
Abstract 276
9.1 Introduction 276
9.2 Metal and Metal Oxide Nanoparticle Coated Diamond Electrodes 279
9.2.1 Choice of Material 279
9.2.2 Methods of Deposition 284
9.2.2.1 Electrochemical Methods 285
9.2.2.2 Non-electrochemical Methods 288
9.2.2.3 Substrate 289
9.2.3 Surface Characteristics 292
9.2.3.1 Characterization Techniques 292
9.2.3.2 Nanoparticle Distribution 292
9.2.3.3 Nanoparticle Adhesion and Stability 293
9.2.3.4 Nucleation 295
9.2.3.5 Size 296
9.2.3.6 Shape 298
9.3 Diamond Nanoparticles as an Electrode Material 299
9.3.1 Background on Detonation Nanodiamond 299
9.3.2 Electrochemistry of Detonation Nanodiamond 300
9.3.3 Methods of Deposition/Incorporation into Electrode Form 301
9.3.3.1 Nanodiamond Composite Materials 302
9.3.3.2 DND in Electrolytes 304
9.3.4 Characterization of Diamond Nanoparticle-Based Electrodes 304
9.4 Nanostructured CVD-Grown Diamond Electrodes 304
9.5 Interactions at the Metal-Diamond Interface 305
9.6 Modern State-of-the-Art and Outlook 307
References 310
10 Diamond Nanowires: Theoretical Simulation and Experiments 332
Abstract 332
10.1 Introduction 333
10.2 Synthetic Strategies of Diamond Nanowires 334
10.2.1 Plasma-Assisted Reactive Ion Etching(RIE)Route 334
10.2.1.1 Mask-Needed Plasma-Assisted RIE Technology 335
10.2.1.2 Metal-Masked Plasma-Assisted RIE Technology 335
10.2.1.3 Oxides-Masked Plasma-Assisted RIE Technology 336
10.2.1.4 Diamond Nanoparticles-Masked Plasma-Assisted RIE Technology 337
10.2.1.5 Maskless Plasma-Assisted RIE Technology for Highly Doped Diamond Nanowires 337
10.2.2 Chemical Vapor Deposition Method (CVD) 339
10.2.2.1 Template-Assisted CVD Method 339
10.2.2.2 Nanowires-Templated CVD for Diamond Nanowires 339
10.2.2.3 AAO-Templated CVD 340
10.2.2.4 Template-Free CVD for Diamond Nanowires 342
10.2.2.5 Microwave Plasma Enhanced CVD (MPCVD) Method 342
10.2.2.6 Hot Cathode Direct Current Plasma Chemical Vapor Deposition Method (HCDC-PCVD) 344
10.2.2.7 Catalyst-Assisted Atmospheric-Pressure Chemical Vapor Deposition 345
10.2.3 Diamond Nanowires Realized from Sp2 Carbon and Sp3 Diamondoid 346
10.2.3.1 Hydrogen Plasma Post-treatment of Multiwalled Carbon Nanotubes (MWCNTs) for Diamond Nanowires 348
10.2.3.2 Diamond Nanowires Grown from Fullerence (C60) 349
10.2.3.3 Diamond Nanowires from Diamonoids 349
10.3 Structures and Properties 351
10.3.1 Structural Stability of Diamond Nanowires 351
10.3.2 Mechanical Properties of Diamond Nanowires 355
10.3.3 Density and Compressibility Properties of Diamond Nanowires 357
10.3.4 Phonon Optical Mode and Electronic Structure of Diamond Nanowires 358
10.3.5 Thermal Conductivity of Diamond Nanowires 360
10.4 Application of Diamond Nanowires 361
10.4.1 Field Emission from Diamond Nanowire 361
10.4.1.1 Electron Field Emission (EFE) from Planar Diamond Nanowire Film and a Single DNW 362
10.4.2 Photonic Quantum Applications from DNWs Embedded with Nitrogen-Vacancy (NV) Centers 364
10.4.3 Diamond Nanowires for Highly Sensitive Matrix-Free Mass Spectrometry Analysis of Small Molecules 365
10.4.4 Suspended Single-Crystal Diamond Nanowires (SCD) for High-Performance Nano-Electromechanical Switches 367
10.4.5 Diamond Nanowires for Sensors 368
10.4.6 Other Applications of Diamond Nanowires 370
10.5 Conclusions and Outlook 371
Acknowledgements 371
References 371
11 Spectroscopy of Nanodiamond Surface: Investigation and Applications 382
Abstract 382
11.1 Introduction 382
11.2 Diamond Crystal Surface and Surface Spectroscopy 383
11.3 Characterization of Nanodiamond Surface and Structure 386
11.3.1 Infrared Spectroscopy and ND Surface 386
11.3.2 Raman Spectroscopy 390
11.3.2.1 Raman in ND Surface Vibrational Study 390
11.3.2.2 Surface Enhanced Raman Scattering on ND 391
11.4 Methods of Surface Functionalization of Nanodiamond 393
11.5 Role of the Surface, Surface Interactions and Their Effects on the Photoluminescence of Nanodiamond 396
11.5.1 Surface Functional Groups and Moieties on Photoluminescence 396
11.5.2 Effects of Surface-Attached Macromolecules on the PL of Nanodiamond 400
11.5.3 Fluorescence Lifetime for the Surface State and Surface Interactions Analysis 403
11.5.4 Nanodiamond Hybrid Structures with Controlled Photoluminescence 406
11.6 Bioapplications Using Surface Spectroscopic Properties of Nanodiamond 409
11.6.1 Spectroscopic Analysis of ND Surface Interaction with Bio-active Molecules in Bio-systems 410
11.6.2 Perspectives of the Use of ND’s Spectroscopic Properties for Bio-sensing 417
11.7 Conclusions 422
Acknowledgements 423
References 423
12 Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications 433
Abstract 433
12.1 Introduction 433
12.2 Production of Nanodiamonds 435
12.3 Characterization Tools 437
12.3.1 Diamond Core 437
12.3.2 Outer Shells and Surface Chemistry 439
12.4 Surface Modifications of Nanodiamonds 441
12.4.1 Surface Hydrogenation of Nanodiamonds 442
12.4.2 Oxidation of Nanodiamonds 445
12.4.3 Amination, Fluorination or Chlorination of Nanodiamonds 446
12.4.4 Surface Graphitization of Nanodiamonds 447
12.5 Colloidal Properties of Modified Nanodiamonds 449
12.5.1 Surface Reactivity of Modified NDs 451
12.5.2 Solubility, Stability in Colloids 451
12.5.3 Negatively Charged NDs 452
12.5.4 Positively Charged NDs 452
12.5.4.1 Presence of Graphitic Carbon at the NDs Surface 452
12.5.4.2 Chemically Induced Positive ZP 453
12.5.4.3 Specific Surface Properties of Hydrogenated Nanodiamonds 454
12.6 Nanodiamonds and Biomedical Applications 455
12.6.1 NDs Assets 455
12.6.1.1 NDs Toxicity and Biodistribution 455
12.6.1.2 Radiosensitization of Hydrogenated NDs 456
12.6.1.3 Grafting of Biological Moieties 457
12.6.1.4 Photoluminescent Centers 458
12.6.1.5 Tunable Size 459
12.6.2 Some Current Challenges 459
12.6.2.1 Labeling 459
12.6.2.2 Safer by Design 460
12.6.2.3 Multifunctional Platform for Drug Delivery 460
12.7 Conclusion 461
Acknowledgements 462
References 462
13 Surface-Modification of Nanodiamond by Amphiphilic Materials: Formation of Single Particle Layer and Polymer-Based Nanocomposite 479
Abstract 479
13.1 Introduction 479
13.2 Fabrication of Organo-Modified Nanodiamond 481
13.3 Topics of Research on Organo-Modification of Nanodiamond by Amphiphilic Materials 482
13.3.1 Mono-“Particle” Dispersion of Organo-Modified Nanodiamond in Fluoropolymer Matrix of Crystalline Transparent Films of Semifluorinated Polymer/Filler Nanocomposite [14] 482
13.3.2 The Role of Modifying Molecular Chains in the Formation of Organized Molecular Films of Organo-Modified Nanodiamond [15] 482
13.3.3 Fabrication of Transparent Nanohybrids with Heat Resistance Using High-Density Amorphous Formation and Uniform Dispersion of Nanodiamond [16] 483
13.3.4 Spherulitic Formation and Characterization of Partially Fluorinated Copolymers and Their Nanohybrids with Functional Fillers [17] 485
13.3.5 Dependency of Nanodiamond Particle Size and Outermost-Surface Composition on Organo-Modification [18] 485
13.3.6 Nanodispersion in Transparent Polymer Matrix with High Melting Temperature Contributing to the Hybridization of Heat-Resistant Organo-Modified Nanodiamond [19] 487
13.3.7 Nanodispersion of Fluorinated Phosphonate-Modified Nanodiamond in Crystalline Fluoropolymer Matrix to Achieve a Transparent Polymer/Nanofiller Composites [20] 488
13.3.8 Thermal Stability of Ordered Multi-particle Layers of Long-Chain Phosphonate-Modified Nanodiamond with Superior Heat-Resistance [21] 489
13.3.9 Correlation Between Nanodispersion of Organo-Modified Nanodiamond in Solvent and Condensed Behavior of Their Organized Particle Films [22] 490
13.4 Summary 491
Acknowledgements 492
References 492
14 Electrochemical Applications of Conductive Diamond Powders 494
Abstract 494
14.1 Introduction 494
14.2 Preparation and Electrochemical Properties of BDDP 496
14.2.1 Preparation of BDDP 496
14.2.2 Characterization of BDDP 496
14.3 Application to Screen-Printed Electrodes 498
14.3.1 Fabrication and Electrochemical Properties of BDDP-Printed Electrodes 498
14.3.2 Application to Glucose Detection 500
14.3.3 Random Microelectrode Array Effect for Sensitive Electrochemical Detection 503
14.4 Application to Catalyst Support for Fuel Cells 507
14.5 Conclusions 510
References 510
Index 514

Erscheint lt. Verlag 2.4.2019
Reihe/Serie Topics in Applied Physics
Zusatzinfo XXV, 507 p. 253 illus., 164 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Chemical Vapour Deposition • CVD Diamonds • CVD Techniques • Diamond color centers • Diamond for Energy Applications • diamond MEMS devices • Diamond Nanoparticles • Diamond Power/MEMS/Electrochemical Devices • Homoepitaxial diamond growth • Synthetic diamond
ISBN-10 3-030-12469-X / 303012469X
ISBN-13 978-3-030-12469-4 / 9783030124694
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 25,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99