Toward Inertial-Navigation-on-Chip -  Haoran Wen

Toward Inertial-Navigation-on-Chip (eBook)

The Physics and Performance Scaling of Multi-Degree-of-Freedom Resonant MEMS Gyroscopes

(Autor)

eBook Download: PDF
2019 | 1. Auflage
XIII, 134 Seiten
Springer-Verlag
978-3-030-25470-4 (ISBN)
Systemvoraussetzungen
139,90 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.



Haoran Wen is a research engineer in the School of Electrical and Computer Engineering at Georgia Tech. He received his PhD from Georgia Tech in 2018.

Supervisor´s Foreword 7
Acknowledgments 9
Contents 10
Parts of this thesis have been published in the following articles: 12
Chapter 1: Introduction 13
1.1 Inertial Navigation System 13
1.2 Evolution of Gyroscopes 15
1.3 Evolution of MEMS Gyroscopes 18
References 22
Chapter 2: The Physics of Resonant MEMS Gyroscopes 25
2.1 Principle of Operation 25
2.2 Non-ideal MEMS Gyroscope 30
2.2.1 Mechanical Model 30
2.2.1.1 Mode-Matching 32
2.2.1.2 Sense Output Bias 33
2.2.2 Electromechanical Transduction and Interface Circuits 34
2.2.3 Drive-Loop Transduction and Control 35
2.2.4 Sense-Mode Detection 36
2.2.5 Electrostatic Tuning 37
2.2.5.1 Stiffness Mismatch Tuning 38
2.2.5.2 Quadrature Cancellation 40
2.2.6 Electrical Noise and Errors 41
2.3 Performance Parameters 42
2.3.1 Scale-Factor and Bandwidth 42
2.3.2 Angle Random Walk 43
2.3.3 Bias Instability and Long-Term Drift 44
References 46
Chapter 3: Bias Control in Pitch and Roll Gyroscopes 47
3.1 Quadrature Cancellation 47
3.1.1 Slanted Electrode 49
3.1.2 Fabrication Implementation 50
3.2 KOH-Etched Quad-Mass Gyroscope 51
3.2.1 Design of Wet-Etched-Only Gyroscope 51
3.2.2 Simulation Results 54
3.2.3 Fabrication Process 55
3.2.4 Experimental Characterization 56
3.2.4.1 Mode-Matching Behavior 56
3.2.4.2 Gyroscope Performance Characterization 58
3.3 Dissipation and In-Phase Bias Stabilization 61
3.4 Robust Substrate-Decoupled Pitch or Roll Gyroscope 62
3.4.1 Slanted Electrode in DRIE-Based Devices 62
3.4.2 High-Frequency Annulus Gyroscope with Slanted Electrodes 64
3.4.3 Experimental Characterization 65
3.4.3.1 Resonant Behavior 66
3.4.3.2 Gyroscope Characterization 67
References 68
Chapter 4: Scale-Factor Enhancement 70
4.1 Transduction Linearity and Actuation Range 70
4.1.1 Nano-gap Comb-Drive Design 72
4.1.2 Testing Resonator Design 74
4.1.3 Experimental Characterization 75
4.2 Coriolis Sensitivity 77
4.2.1 Mode-Shape Optimization 77
4.2.2 Resonant Framed-Annulus Pitch or Roll Gyroscope 80
4.2.3 Experimental Characterization 81
4.2.3.1 Resonant Behavior 83
4.2.3.2 Gyroscope Response 83
4.2.3.3 Temperature Behavior 85
References 86
Chapter 5: Integrated Inertial Measurement Unit 87
5.1 Quasi-Solid Disk Yaw Gyroscope 87
5.2 Timing and Inertial Measurement Unit 88
5.2.1 3-Axis Gyroscopes 89
5.2.2 3-Axis Accelerometers 89
5.2.3 Timing Resonator 90
5.2.4 Experimental Characterization 91
5.2.4.1 Gyroscope Characterization 92
5.2.4.2 Accelerometer Characterization 93
5.2.4.3 Resonator Characterization 93
5.2.4.4 Summary 93
References 94
Chapter 6: Bias Stability Limit in Resonant Gyroscopes 96
6.1 Electronics and Instrument Limit 96
6.2 Demodulation Phase Error 101
6.3 Performance of Pitch or Roll Gyroscopes 109
6.3.1 Performance Scaling Comparison 109
6.3.2 Nonlinear Tuning Effect 110
Chapter 7: Conclusions and Future Work 113
7.1 Contributions 113
7.2 Future Work 114
7.2.1 Low-Power Resonant Gyroscopes 115
7.2.2 Performance Enhancement in High-Frequency Resonant Gyroscopes 116
7.2.2.1 Chip-Level Ovenization 116
7.2.2.2 System Optimization and ASIC Implementation 117
7.2.2.3 Quality-Factor Optimization 117
References 118
Appendix A: Fabrication Process 119
A.1 Wet-Etching-Based Bulk Micromachining Process 120
A.2 HARPSS+ Process 122
References 125
Appendix B: Numerical Models 126
Appendix B: Numerical Models 126
B.1 Annulus Resonator Mechanical Nonlinearity Estimation 126
B.2 MATLAB Code for Numerical Bias Instability Modeling 128
References 134

Erscheint lt. Verlag 14.9.2019
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte inertial measurement unit • intertial navigation • intertial sensing • MEMS gyroscope • micro-gravity accelerometer • multi-axis gyroscope • resonant pitch and roll gyroscope • wearable inertial sensor • wet-etching-based bulk micromachining
ISBN-10 3-030-25470-4 / 3030254704
ISBN-13 978-3-030-25470-4 / 9783030254704
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 5,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99