Internet of Things for Sustainable Community Development (eBook)

Wireless Communications, Sensing, and Systems

(Autor)

eBook Download: PDF
2019 | 1. Auflage
XXI, 347 Seiten
Springer-Verlag
978-3-030-35291-2 (ISBN)

Lese- und Medienproben

Internet of Things for Sustainable Community Development -  Abdul Salam
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers how Internet of Things (IoT) has a role in shaping the future of our communities. The author shows how the research and education ecosystem promoting impactful solutions-oriented science can help citizenry, government, industry, and other stakeholders to work collaboratively in order to make informed, socially-responsible, science-based decisions. Accordingly, he shows how communities can address complex, interconnected socio-environmental challenges. This book addresses the key inter-related challenges in areas such as the environment, climate change, mining, energy, agro-economic, water, and forestry that are limiting the development of a sustainable and resilient society -- each of these challenges are tied back to IoT based solutions.

  • Presents research into sustainable IoT with respect to wireless communications, sensing, and systems
  • Provides coverage of IoT technologies in sustainability, health, agriculture, climate change, mining, energy, water management, and forestry
  • Relevant for academics, researchers, policy makers, city planners and managers, technicians, and industry professionals in IoT and sustainability 



Dr. Abdul Salam received the B.Sc. and M.S. degrees in computer science from Bahauddin Zakariya University, Multan, Pakistan, in 2001 and 2004, respectively, the M.S. degree in computer engineering from UET, Taxila, Pakistan, in 2012, and the Ph.D. degree in computer engineering from the Cyber-Physical Networking Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA, under the supervision of Prof. M. C. Vuran. He was a Lecturer with the Department of Computer Science, Bahauddin Zakariya University, and the Department of Computer Science and Information Technology, Islamia University, Bahawalpur, Pakistan. He is currently an Assistant Professor with the Department of Computer and Information Technology, Purdue University, West Lafayette, IN, USA. His current research interests include underground soil sensing, wireless communications, Internet of underground things in digital agriculture, sensor-guided irrigation systems, and vehicular communications. Professor Salam is a Member of the Realizing the Digital Enterprise research group and Center for the Environment (C4E), a Purdue's initiative for interdisciplinary, problem-driven research and teaching. He was a recipient of the ICCCN 2016 Best Student Paper Award, the Robert B. Daugherty Water for Food Institute Fellowship, the Gold Medal MS (CS) on securing first position in order of merit, and the 2016-2017 Outstanding Graduate Student Research Award from the Department of Computer Science and Engineering, University of Nebraska-Lincoln. He served the Pakistan Army for 9 years in a number of command, staff, and field roles. He held the principal position at the Army Public School and College, Thal Cantonment. He is the Director of the Environmental Networking Technology Laboratory. He has served as an Associate Editor for the IEEE GRSS Remote Sensing Code Library from 2016 to 2018. He is an Associate Editor of the Advanced Electromagnetics Journal.​  

Preface 7
Acknowledgements 10
Contents 11
About the Author 19
1 Internet of Things for Sustainable Community Development: Introduction and Overview 20
1.1 Introduction 20
1.1.1 Global Efforts to Address Sustainability 21
1.1.2 Sustainable Development Goals (SDGs) 22
1.1.3 Sustainability Indicators 22
1.2 IoT as Enabling Paradigm for Sustainability 23
1.3 SDG Goals and Sustainable IoT Systems 24
1.4 Examples from Developing Countries 24
1.4.1 Examples from Advanced Countries 26
1.5 IoT Challenges for Sustainability 26
1.6 IoT Definitions 27
1.6.1 Institute of Electrical and Electronics Engineers 27
1.6.2 International Telecommunication Union 27
1.6.3 Internet Engineering Task Force 28
1.6.4 National Institute of Standards and Technology 29
1.7 Architecture of IoT Paradigm for Sustainability 29
1.7.1 IoT Elements 30
1.7.2 IoT Functions 30
1.8 Networking for Sustainability IoT Paradigm 32
1.8.1 Five-Tier Network 32
1.8.1.1 Terrestrial Network Tier 32
1.8.1.2 Space-Based Wireless Network Tier 34
1.8.1.3 Aerial Network Tier 35
1.8.1.4 Underwater Network Tier 35
1.8.1.5 Underground Network Tier 35
1.9 Wireless Communications for Sustainability IoT 36
1.9.1 Key Drivers for Next-Generation Wireless Systems in Sustainability IoT 36
1.9.2 Wireless Requirements for Sustainability IoT 37
1.9.3 Wireless Standard Applications to Sustainability IoT 38
1.9.3.1 RF Wireless Modem Chipset 38
1.9.4 Standardization for Sustainability IoT 38
1.9.4.1 Long-Term Evolution (LTE) IoT 38
1.9.4.2 802 Wi-Fi Standards 39
1.9.4.3 5G and 6G Wireless Communications 39
1.9.5 Artificial Intelligence and Wireless 41
1.9.6 Wireless Spectrum Paucity 41
1.9.7 Rural Broadband Telecommunications 43
1.9.8 Satellite Communications 43
1.10 Organization of the Book 43
References 47
2 Internet of Things for Environmental Sustainability and Climate Change 51
2.1 Introduction 51
2.2 Climate Change IoT Things for Environmental Sustainability 53
2.3 Climate IoT as the Sustainability Enabler Framework 54
2.3.1 Holistic System 54
2.3.2 Novel Sensing Methods 55
2.3.3 Solar Radiation and Soil Moisture Data 55
2.3.4 Forecasting Models 56
2.3.5 Emissions Monitoring 56
2.4 Climate Communication Technologies and Systems 58
2.4.1 Doppler Radar 58
2.4.2 Wind Profiling Radars 58
2.4.2.1 Types of Wind Profiling Radars 58
2.4.2.2 Sonic Detection and Ranging (SODAR) 60
2.4.2.3 Wind Profiling LiDARs 60
2.4.3 Microwave Radiometers 61
2.4.3.1 Longwave Measurements 61
2.4.3.2 Shortwave Measurements 61
2.4.4 Ceilometer 62
2.4.4.1 Optical-Drum Ceilometer 62
2.4.4.2 Laser Ceilometer 62
2.4.5 Microbarographs 62
2.4.6 Pyranometer 62
2.4.7 Millimeter Cloud Radar 63
2.4.8 Sonic Anemometers 63
2.4.9 Environmental and Meteorological Satellites for Remote Sensing 63
2.4.9.1 Geostationary Satellites 64
2.4.9.2 Polar-Orbiting Satellites 64
2.4.9.3 More Meteorological Satellites 65
2.4.10 GPS Signals for Remote Sensing 66
2.4.10.1 GPS Limb Sounding for Atmospheric Reflectivity 66
2.4.10.2 GPS for Precipitable Water 66
2.5 Climate IoT Monitoring Systems 66
2.5.1 Cloud Properties Monitoring 66
2.5.2 Atmospheric Emissions Monitoring 67
2.5.3 Monitoring of the Surface of the Earth 67
2.5.4 Sea State Monitoring 68
2.5.4.1 OceanSITES 68
2.5.4.2 Air-Sea Heat Fluxes 68
2.5.5 Arctic Measurements 68
2.5.6 Hurricane Monitoring 69
2.5.7 Solar Radiation Monitoring 69
2.6 Climate Databases Integration to IoT and Cloud 69
2.7 IoT Enabled Indices 71
2.7.1 Air Quality Index (AQI) 71
2.7.2 Drought Index (EDDI) 73
2.7.3 Environmental Sensitivity Index (ESI) 73
2.7.4 Coastal Drought Index Using Salinity Data 73
2.7.5 Wildfire Threat Index (SAWTI) 73
2.8 Environmental Sensing Systems 73
2.8.1 Precipitation Occurrence Sensor System 73
2.8.2 Radiosonde Temperature and Humidity Sensing 75
2.8.3 Cloud, Aerosol Polarization and Backscatter LiDAR (CAPABL) 76
2.8.4 Operational Bright-Band Snow Level Sensing 76
2.8.5 Atmosphere Tomography Using Acoustic 76
2.8.6 Automated Atmospheric River Detection 76
2.9 Case Studies 77
2.9.1 Indian Ocean Tsunami Warning System 77
2.9.2 Undersea Cables as Seismic Sensors 77
2.9.3 Connected Alarm Systems for Fast Moving Fires 77
2.9.4 Urban Air Quality Sensing 77
2.9.5 Water Flow Sensors 77
References 78
3 Internet of Things in Agricultural Innovation and Security 88
3.1 Introduction 88
3.1.1 Decision Agriculture 89
3.1.2 Main Barriers to Digital Agriculture Technologies Adoption 90
3.2 Internet of Things for Sustainable Agriculture 91
3.3 Wireless Underground Communications 93
3.4 Underground Antennas and Beamforming 95
3.5 Soil Sensing for Sustainable Ag-IoT 98
3.6 Aerial Sensing 104
3.7 Big Data 105
3.8 Soil Mapping 106
3.9 Digital Agriculture Education 107
3.9.1 Curriculum Development 108
3.9.2 Work Roles in Digital Agriculture 109
3.10 Energy Harvesting 109
3.10.1 In Situ Energy Harvesting Methods 110
3.10.2 Wireless Subsurface Power Transfer 111
3.10.3 Solar Power 113
3.10.4 Energy Harvesting Challenges 113
3.10.5 Combined Power and Data Transfer in Digital Agriculture 114
3.11 The Ag-IoT Systems 114
References 118
4 Internet of Things for Water Sustainability 130
4.1 Introduction 130
4.2 Water Sustainability IoT 133
4.3 IoT as an Enabler for Sustainable Water 133
4.3.1 Advantages of Sustainable Water IoT 133
4.3.2 Research Challenges Needs in Sustainable Water IoT 134
4.4 Water Sustainability IoT Monitoring and Applications 135
4.4.1 Applications 136
4.4.2 Source Water Monitoring 137
4.4.2.1 Surface Water 137
4.5 Sensing in Sustainable Water IoT 137
4.5.1 pH Sensing 138
4.5.1.1 Combination (Electrochemical) pH Sensor 138
4.5.1.2 Three-Electrode pH Sensor 138
4.5.1.3 Laboratory pH Sensor 138
4.5.1.4 Single-Chip pH Sensors 138
4.5.2 Conductivity Sensing 139
4.5.2.1 Conductivity Measurement Units 139
4.5.2.2 Conductivity Sensors 139
4.5.3 Dissolved Oxygen Sensing 140
4.5.3.1 Galvanic DO Sensor 142
4.5.3.2 Optical Dissolved Oxygen Sensors 142
4.5.4 Eutrophication and Nutrient Sensing 142
4.5.4.1 Optical Nutrient Sensor 143
4.5.4.2 Wet-Chemical Sensor 143
4.5.4.3 Ion-Selective Electrodes Sensor 143
4.5.5 Water Flow Sensors 143
4.5.6 Temperature Sensing 144
4.5.7 Satellite Sensing 144
4.6 Sustainable Water IoT Technologies and Systems 145
4.6.1 Water Pollution Control 145
4.6.2 Ocean Acidification and CO2 Mitigation 147
4.7 The Sustainable Water Case Studies 148
4.7.1 Open Water Web 148
4.7.2 Waspmote Smart Water 149
4.7.3 National Network of Reference Watersheds 149
4.7.4 Hydrometeorology Testbed 149
4.7.4.1 Winter Weather Experiment 149
4.7.4.2 Flash Flood and Intense Rainfall Experiment 150
4.7.5 WaterWatch 151
4.7.6 Water Evaluation and Planning System (WEAP) 152
4.7.7 CalWater 152
4.7.8 River and Reservoir Modeling Tool (RiverWare) 152
4.7.9 Digital Coast 153
4.7.10 European CoastColour 153
4.7.11 Water Harvesting Assessment Toolbox 153
4.7.12 National Groundwater Monitoring Network 153
4.7.13 Water Toolbox 154
4.8 Sustainable Water Indices 155
References 155
5 Internet of Things for Sustainable Forestry 163
5.1 Introduction 163
5.1.1 Sustainable Digital Forestry 165
5.1.2 Challenges in Sustainable Digital Forestry 166
5.2 IoT in Digital Forest Management 167
5.2.1 Elements of the Forest IoT 168
5.2.2 Forest Things 168
5.2.3 The Montréal Process Criteria and Indicators(MP C& I)
5.2.3.1 Montréal Process 169
5.2.3.2 Criteria and Indicators (MP C& I)
5.3 Sensing in Digital Forestry IoT 170
5.3.1 Remote Sensing 170
5.3.2 Per-Tree Based Forest Analysis 172
5.3.3 Phenology Sensing 173
5.3.4 Forest Species Sensing 173
5.3.5 Species Migration Monitoring 173
5.3.6 Tree Health Sensing 175
5.3.7 Sensing of Increased Soil and Air Temperature and Elevated Carbon Dioxide 176
5.3.8 Illegal Logging Sensing 176
5.3.9 Fire Sensing 177
5.3.9.1 Impact of Fire on Soil 177
5.3.9.2 Fire and Environmental Pollution 177
5.3.9.3 Impact of Fire on Fresh Water and Stream Flow 177
5.3.9.4 Fire Sensing and Danger Estimation Tools 178
5.3.9.5 Remote Sensing of Amazon Rain Forest Fires 180
5.3.10 Invasive Species and Fungi Sensing 180
5.3.11 Vegetation Height Sensing 182
5.3.12 Machine-Induced Stress Sensing 182
5.3.13 In Situ Soil Moisture Sensing Approaches 183
5.3.14 Radio Waves as Sensor: Propagation Based Sensing in Forests 183
5.3.15 From Permittivity to Soil Moisture 185
5.3.16 Transfer Functions 186
5.4 Modeling in Digital Forestry 188
5.4.1 Habitat Modeling 188
5.4.2 Multi-Scale Machine-Learning Predictive Modeling 188
5.4.3 Smoke Prediction Models 188
5.4.4 Modeling Invasive Insects 189
5.4.5 Forest Disturbances Modeling 189
5.4.6 Fire Behavior Modeling 189
5.4.7 Wildlife Habitat Suitability Modeling 190
5.4.8 LANDIS 190
5.5 Forest Databases Integration with Forestry IoT 190
5.6 International Organizations for Forests Sustainability 191
References 192
6 Internet of Things in Sustainable Energy Systems 198
6.1 Introduction 198
6.1.1 Energy and Sustainability 199
6.1.2 Energy Related Challenges 201
6.2 The Sustainable Energy IoT 202
6.2.1 Sustainability Energy Things 203
6.3 Communication Technologies for Sustainable Energy IoT 203
6.3.1 Wi-SUN 204
6.3.2 Wide Area Monitoring Using SCADA 204
6.3.3 Neighborhood Area Networking 204
6.3.4 Power-Line Communications 205
6.3.5 Other Communication Technologies for Grid 205
6.3.6 The Advanced Metering Infrastructure 206
6.4 Sensing in Sustainable Energy IoT 206
6.4.1 Sensors on Nuclear Power Reactors 206
6.4.1.1 Vibration Sensing 206
6.4.1.2 Temperature Sensing 207
6.4.1.3 Pressure Sensors 207
6.4.1.4 Liquid Level Measurement Sensors 207
6.4.1.5 Flow Sensors 208
6.4.1.6 Corrosion Sensing 209
6.4.1.7 Radiation Sensors 209
6.4.1.8 Water Coolant Chemistry 209
6.4.2 Sensors for Coal-Fired Power Plants 210
6.4.2.1 Oxygen Sensing 211
6.4.2.2 Carbon Monoxide Sensing 211
6.4.2.3 Flame Sensing 211
6.4.2.4 Coal and Air Flow Sensing 212
6.4.2.5 Sensing of Carbon Content in Ash 212
6.4.2.6 Gases and Temperature Sensing 212
6.4.3 Transmission System Sensors 212
6.4.3.1 Substation Sensing Methods 213
6.4.3.2 Overhead Line Sensing 214
6.4.4 Smart Meters 214
6.4.5 Wind and Solar Sensing 215
6.5 The Case Studies of Sustainable Energy IoT Technologies 215
6.5.1 Electric Vehicle Energy Internet 215
6.5.2 Combined Cooling Heating and Power System 215
6.5.3 Power-to-Gas (P2G) Energy Internet 216
6.5.3.1 Water Electrolysis 217
6.5.3.2 Alkaline Electrolysis 217
6.5.3.3 Proton Exchange Membrane (PEM) Electrolysis 218
6.5.3.4 Methanation 218
6.5.3.5 Challenges 218
6.5.3.6 P2G Opportunities in Sustainable Energy IoT 219
6.5.4 Sustainability and Net Zero Energy Buildings 219
6.5.5 Energy Supply Chain Management 220
6.6 Sustainability in Energy Generation 221
6.6.1 Hydrogen 221
6.6.2 Biobutanol 221
6.6.3 Bioethanol 221
6.6.4 Biodiesel 222
6.6.5 Microbial Electricity 222
6.6.6 Biomass 222
6.7 Sustainability IoT Systems and Databases 223
References 224
7 Internet of Things for Sustainable Human Health 232
7.1 Introduction 232
7.1.1 Sustainable Health IoT 233
7.1.2 Climate Change and Human Health 233
7.2 Benefits of Sustainable Health IoT 236
7.3 Sustainable Health IoT 236
7.4 Sustainable Health IoT Technology 237
7.4.1 Precision Medicine 237
7.4.2 Personalization of Diabetes Treatment 237
7.4.3 Automated Nutrition Control 237
7.4.4 Mobile Healthcare Connectivity 237
7.4.5 Cancer Treatment 238
7.4.6 Glucose Monitoring 238
7.4.7 Smart Inhalers 238
7.5 Sensing in Sustainable Health IoT 239
7.5.1 Physiological Sensing 239
7.5.2 Ingestible Sensors 239
7.5.3 Wearable Sensors 240
7.6 Environmental Sensing for Health and Wellness 240
7.6.1 Sanitation, Waterborne Diseases, and Human Health 240
7.6.2 Ultraviolet Radiation and Human Health 242
7.6.3 Extreme Weather and Human Health 243
7.7 Wireless, Human Body, and Molecular Communications in Sustainable Health IoT 243
7.7.1 Human Body Communications 244
7.7.2 Molecular Communications in Sustainable Health IoT 244
7.8 Sustainable Health IoT Systems 246
7.8.1 Health Indices 247
7.8.2 Environmental Public Health Tracking Network 248
7.8.3 Mobile Health-Care Innovations 248
7.8.4 Mobility Models and Health 248
7.8.5 Virtual Beach 249
References 249
8 Internet of Things for Sustainable Mining 258
8.1 Introduction 258
8.1.1 Sustainable Mining 258
8.1.2 IoT for Sustainable Mining 259
8.2 Sustainable Mining Things 261
8.3 Research Challenges in Sustainable Mining IoT 263
8.4 Sustainable Mining IoT Technologies and Monitoring Systems 264
8.4.1 Mine Monitoring for Health and Safety 265
8.4.2 Environmental Monitoring 265
8.4.3 Earth Crust Monitoring 266
8.4.4 Transportation Management 266
8.4.5 Gas Detection 267
8.4.6 Goaf Fill Monitoring 268
8.4.7 Mine Fire Monitoring 268
8.4.8 Conveyor Belt Monitoring 268
8.4.9 Water Monitoring 268
8.4.10 Miners Tracking 269
8.5 Paradigm-Shift Technologies for Sustainable Mining IoT 269
8.6 3D Underground Mine Modeling 269
8.7 Use of Time-Domain Reflectometry in Mining 270
8.7.1 Treatment Technologies for Mining-Influenced Water 270
8.8 Applications of Nanotechnology in Mining 273
8.9 Mining Site Uncluttering and Restoration 273
8.10 Sensing in Sustainable Mining IoT 275
8.10.1 Ore Bodies Sensing 275
8.10.1.1 Underground Gravity Sensing and Rock Mapping 275
8.10.1.2 Magnetic Sensing 276
8.10.1.3 Ground Penetrating Radar Subsurface Sensing 277
8.10.1.4 Seismic Sensing 277
8.10.1.5 Tomographic Sensing 277
8.10.2 Mine Water Sensing 279
8.10.3 Remote Sensing 279
8.10.3.1 Hyperspectral Sensing 279
8.10.3.2 Thematic Sensing and Mapping 279
8.10.4 Multi-Spectral Scanner 279
8.10.5 Mine Water Contamination Sensors 280
8.10.6 Sensor Technologies for Gas Leaks in Mines 280
8.10.6.1 Pellistor Sensor 280
8.10.6.2 Infrared Gas Sensor 281
8.10.6.3 Electrochemical Sensors 281
8.10.6.4 Semiconductor Sensor 281
8.10.6.5 Laser Sensor 281
8.10.6.6 Other Gas Sensors 281
8.10.7 Autonomous Sensing of Groundwater Qualityin Mines 282
8.11 Global Sustainability Efforts 282
8.12 Wireless Communications in Sustainable Mining IoT 282
References 283
9 Internet of Things in Water Management and Treatment 287
9.1 Introduction 287
9.1.1 Impacts of the Human Activities on Amount and Quality of Water 288
9.2 Water Management and Treatment using IoT 289
9.2.1 Water Management and Treatment using IoT 290
9.3 Groundwater Sensing and Treatment 291
9.3.1 Applications of Nanotechnology in Groundwater Treatment 291
9.3.2 The Nanomaterials for Contaminant Remediation 293
9.3.3 Hazardous Water Sensing and Treatment 293
9.4 Underground Communications in Urban Underground Infrastructure Monitoring 294
9.4.1 Wastewater and Stormwater Monitoring Needs 295
9.4.2 Internet of Underground Things for Wastewater and Stormwater Monitoring 296
9.4.3 Path Loss Model for Stratified Media to Air Communications 297
9.4.3.1 Attenuation in the Stratified Medium 297
9.4.3.2 Dispersion in Different Subsurface Layers 298
9.4.3.3 Dispersion of Subgrade of the Soil Medium 299
9.4.3.4 Dispersion of Asphalt 299
9.4.3.5 Dispersion of Base Gravel Aggregate 300
9.4.4 Model Evaluations 300
9.5 Sensing and Sampling 301
9.5.1 Contaminant Sensing 302
9.5.2 Sensing for Wastewater Treatment and Reuse 303
9.5.3 Agricultural Hazards Sensing 305
References 307
10 Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends 313
10.1 Introduction 313
10.1.1 IoT Security Principles 318
10.1.2 Digital Forensics in Sustainability IoT 319
10.2 Openness Paradox and Data Dichotomy: Privacy and Sharing 319
10.2.1 Privacy in Sustainability IoT 319
10.2.1.1 Data Sifting 319
10.2.1.2 Proxy Data Analyzer 320
10.2.1.3 Multi-Layered Approach to Privacy 320
10.2.2 Universal Data Flow, Sharing, and Standardization 320
10.2.2.1 Significance of Data Sharing 321
10.2.2.2 Data Standardization 322
10.3 Opportunities and Challenges in IoT for Sustainability 322
10.3.1 Technical Challenges 323
10.3.2 Policy Challenges 323
10.4 Progress in IoT Security Standardization 324
10.5 Case Studies 324
10.5.1 Cybersecurity and Data Privacy in Digital Agriculture 324
10.5.1.1 Information Privacy in the Field 327
10.5.1.2 Data Usability in the Field 329
10.5.1.3 Farm Equipment and Data Availability in the Field 329
10.5.1.4 Cybersecurity Recommendations for Precision Agriculture 330
10.5.2 Smart Grid 330
10.5.3 Health and Cybersecurity 330
10.5.3.1 Critical Conditions of the Healthcare Cybersecurity 331
10.5.3.2 Healthcare Cybersecurity Objectives 332
10.5.4 Smart Meter 332
10.5.5 Water Systems 333
References 335
Index 342

Erscheint lt. Verlag 28.12.2019
Reihe/Serie Internet of Things
Zusatzinfo XXI, 334 p. 80 illus., 62 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Behavior and Decision Making IoT • Cultural Heritage Discovery and Learning based IoT • IoT and Climate Change • IoT in Agricultural Innovation and Security • IoT in Ecosystem and Human Health • IoT in Regional Climates • IoT in Sustainable Energy Systems • Sustainable Mining using IoT
ISBN-10 3-030-35291-9 / 3030352919
ISBN-13 978-3-030-35291-2 / 9783030352912
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99