Detection and characterization of Lithium plating

(Autor)

Buch
XIV, 233 Seiten
2023
Universitätsverlag der TU Berlin
978-3-7983-3278-2 (ISBN)

Lese- und Medienproben

Detection and characterization of Lithium plating - Julian Long
16,00 inkl. MwSt
Lithium Plating ist nicht nur der Alterungsmechanismus in Lithium-Ionen-Batterien mit dem größten Kapazitätsverlust, sondern wird auch im Zuge der voranschreitenden Elektrifizierung des Personenverkehrs immer wichtiger. In Elektrofahrzeugen finden sich die extremen Zustände, wie niedrige Ladetemperaturen und hohe Ladestrome, unter denen Plating auftritt, deutlich häufiger als in Unterhaltungstechnik. Durch die Vielzahl von Parametern, von der Zellgeometrie bis hin zur Elektrolyzusammensetzung, die Plating beeinflussen, fehlt immer noch ein tieferes Verständnis des Plating-Prozesses. Ohne dieses Wissen ist es schwer, Zellen zu designen, die resistent gegen Plating sind oder Zellen unter optimalen Bedingungen zu betreiben um Plating zu minimieren. Das Ziel dieser Arbeit ist es, verschiedene Methoden aufzuzeigen, die die Untersuchung von Plating auf drei verschiedenen Ebenen ermöglichen. Die erste Methode untersucht das Gesamtverhalten der Zelle auf Zellebene. Hierbei wird das atypische Verhalten der Strom- und Spannunsprofile wahrend des Plating-Vorgangs analysiert. Der Fokus liegt dabei auf der Untersuchung der Konstantstrom-Phase bei niedrigen Temperaturen während der Ladung. Das Stromprofil dieser Phase kann mit der JMAK-Funktion gefittet werden, welche die elektrochemische Abscheidung eines Metalls auf einer Oberfläche beschreibt. Die resultierenden Fitting-Parameter können genutzt werden, um das Plating-Verhalten vorherzusagen und sind gleichzeitig eine bessere Abschätzung fur die Menge an geplatetem Lithium im Vergleich zu gängigen Methoden. Die Ergebnisse konnten außerdem helfen das Sicherheitsrisiko der Zelle bei Dendritenbildung vorherzusagen. Im zweiten Teil wird die chemische Zusammensetzung der SEI mittels XPS untersucht. Die Zusammensetzung, wie auch die mechanischen Eigenschaften der SEI, beeinflussen den Plating-Prozess stark und es wurde in vorhergehenden Arbeiten gezeigt, dass Plating auch die Morphologie und Dicke der SEI drastisch verändern kann. Zellen in verschiedenen Zuständen (geplatet, geladen, entladen), sowie Zellen verschiedener Hersteller wurden mit XPS untersucht. Während der Messungen wurde ein ungewollter Nebeneffekt des Messaufbaus entdeckt, der zu einer Migration von Lithium an die Oberflache der Proben geführt und die Messergebnisse verfälscht hat. Unabhängig von diesem Effekt war es dennoch möglich, zu zeigen, dass die SEI in Zellen verschiedener Hersteller stark unterschiedliche Zusammensetzungen haben kann und dass Plating nicht nur die Morphologie der SEI beeinflusst, sondern auch die chemische Zusammensetzung. Weiterhin konnte der ungewollte Nebeneffekt verwendet werden, um Proben zu identifizieren, die vor kurzem geplatet wurden und konnte in zukünftigen Arbeiten verwendet werden, um lokalisiert Lithium-Ablagerungen auf geplateten Proben zu identifizieren. Im letzten Teil wurde die Partikelstruktur der Anoden von Zellen verschiedener Zellhersteller mit Hilfe einer watershed-Partikeldetektion an LSM-Bildern untersucht. Die Verteilung der Partikelgrößen wurde mit dem Kapazitätsverlust gleicher Zelle durch Plating verglichen. Es wurde gezeigt, dass der Kapazitätsverlust mit Parametern, die aus den Partikelverteilungen extrahiert wurden, korreliert. Ein größerer Datensatz ist jedoch notwendig, um diese Ergebnisse zu validieren. Zusammenfassend hat diese Arbeit verschiedene neue Methoden aufgezeigt, um Plating auf verschiedenen Vergrößerungsebenen zu detektieren und zu charakterisieren. Neue Ansätze wurden gefunden, um das Platingverhalten von Zellen vorherzusagen, lokalisiertes Lithium auf der Oberfläche zu detektieren und Zellen platingresistenter designen zu können. Lithium plating is not only the most severe ageing mechanism in lithium-ion batteries (LIBs) but also becoming more and more important due the increasing presence of electric vehicles (EVs). In EVs the extreme conditions causing lithium plating, like very high charging currents and low environment temperatures, are much more prevalent than in consumer electronics. Due to the high number of factors that influence the plating process, ranging from the cell geometry to the chemical composition of the electrolyte, a deeper understanding of the plating process is still lacking. Without this knowledge it is hard to design cells in a plating resistant way, or to operate cells under the ideal conditions to minimize plating. This thesis aims at showing different methods to investigate the plating process on three different levels. The first method is on the cell level, investigating the behaviour of the whole cell during plating. It contains the analysis of the voltage and current profiles that show an atypical behaviour during plating. The focus of the analysis is on the current profile of the constant voltage (CV) phase during charging under low temperature conditions leading to plating. This current profile can be fitted with the Johnson-Mehl-Avrami-Kolmogorov (JMAK) function that describes the electrochemical deposition process of a metallic species on a surface. The resulting fitting parameters can be utilized to characterize the plating behaviour of the cell as well as better estimate the amount of plated lithium than commonly used methods. It can also potentially predict the future safety risk due to dendrite formation. In the second part the chemical composition of the surface electrolyte interface (SEI) is investigated using X-ray photoelectron spectroscopy (XPS). The composition as well as the mechanical properties of the SEI are strongly influencing the plating process and preliminary work has shown that plating is also changing the morphology of the SEI and increasing its thickness drastically. Cells under different conditions (plated, charged and discharged) as well as cells of different manufacturers have been probed using XPS. During the measurements an unwanted side effect of the experimental setup was discovered that lead to a migration of lithium to the surface of the sample and was distorting the measurement results. Regardless of the effect, it was possible to see that the SEI can have a very different composition in cells of different manufacturers and that plating not only changes the morphology but also the composition of the SEI. The unwanted side effect could furthermore be utilized to identify samples that were plated recently and could be used in further more controlled experiments to localize lithium depositions on plated samples. In the last part the particle structure of the anode surface of cells of different manufacturers was investigated using a watershed particle detection algorithm on laser scanning microscopy (LSM) images of the anode surfaces. The distributions of the particle sizes have then been compared to the capacity loss in plated cells. It was shown that the capacity loss correlates with parameters extracted from the particle size distributions. It is however necessary to create more data to verify this correlation. In summary this thesis utilized new methods to detect or characterize plating on different levels of magnification, from the cell level to the chemical composition. New approaches were found to predict a cells future plating behaviour, spatially localize plated areas on the anode and design cells in a plating resistant way.
Erscheinungsdatum
Reihe/Serie Elektrische Energietechnik an der TU Berlin ; 14
Verlagsort Berlin
Sprache englisch
Maße 148 x 210 mm
Gewicht 540 g
Einbandart geklebt
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte JMAK • Johnson-Mehl-Avrami-Kolmogorov • lib • Lithium-Ion Battery • Lithium-Ionen-Batterie • Plating • XPS • X-Ray Photoelectron Spectroscopy
ISBN-10 3-7983-3278-9 / 3798332789
ISBN-13 978-3-7983-3278-2 / 9783798332782
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
86,00