Physics of Solar Energy and Energy Storage -  C. Julian Chen

Physics of Solar Energy and Energy Storage (eBook)

eBook Download: EPUB
2024 | 2. Auflage
400 Seiten
Wiley (Verlag)
978-1-394-20363-5 (ISBN)
Systemvoraussetzungen
111,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
PHYSICS OF SOLAR ENERGY AND ENERGY STORAGE

Join the fight for a renewable world with this indispensable introduction

Solar energy is one of the most essential tools in the fight to create a sustainable future. A wholly renewable and cost-effective energy source capable of providing domestic, business, and industrial energy, solar energy is expected to become a $223 billion a year industry by 2026. The future of global energy production demands researchers and engineers who understand the physics of harnessing, storing, and distributing solar energy.

Physics of Solar Energy and Energy Storage begins to meet this demand, with a thorough, accessible overview of the required fundamentals. Now fully updated to reflect the past decade of research amidst a growing understanding of the scale of our collective challenge, it promises to train the next generation of researchers and engineers who will join this vital effort.

Readers of the second edition of Physics of Solar Energy and Energy Storage will find:

  • A particular focus on lithium-ion rechargeable batteries
  • Detailed discussions of photovoltaic solar systems, concentrating solar systems, passive solar heating, and more
  • Homework problems and exercises throughout to reinforce learning

Physics of Solar Energy and Energy Storage is ideal for mechanical, chemical, or electrical engineers working on solar or alternative energy projects, as well as researchers and policymakers in related fields.

C. Julian Chen is an adjunct professor and Senior Research Scientist in the Department of Applied Physics and Applied Mathematics at Columbia University since 2007. Prior to his time as an academic, he spent fifteen years in IBM's TJ Watson Research Center, where he performed research on scanning tunneling microscopy (STM). To continue STM research, he served as a Professor of Physics at Hamburg University for three years.

List of Figures


1.1 Energy consumption by sectors.

1.2 History of fossil‐fuels consumption

1.3 Deepwater Horizon oil rig explosion.

1.4 Volume and percentage of coal‐generated electricity.

1.5 Phasing out coal electricity in the United States.

1.6 Cost decline of installed solar PV systems.

1.7 Cost of various energy resources.

1.8 Annual solar energy arriving at surface of Earth.

1.9 World marketed energy consumption.

1.10 Sources of electricity: history and forecast.

1.11 Selenium solar cell and silicon solar cell.

1.12 Inventors of silicon solar cells.

1.13 Average price of solar panels: 1975–2021.

1.14 Maximum power and fill factor.

1.15 Volume and types of solar cells: 2011–2021.

1.16 Winners of the 2019 Nobel Prize in Chemistry.

1.17 The first lithium‐ion rechargeable battery of Stanley Whittingham.

1.18 Improved Li‐ion battery cathode materials of John Goodenough.

1.19 Improved Li‐ion battery anode materials of Akira Yoshino.

1.20 The expansion of Li‐ion rechargeable battery market.

1.21 Percentage of electricity generation from hydropower in various countries.

1.22 Itaipu hydropower station at border of Brazil and Paraguay.

1.23 Derivation of Betz theorem of wind turbine.

1.24 Efficiency of wind turbine.

1.25 Wind turbines in Copenhagen.

1.26 Costa Pinto Production Plant of sugar ethanol.

1.27 Annual production of ethanol in Brazil.

1.28 Production process of biodiesel.

1.29 Oil palm fruit.

1.30 Wild oil palms in Africa

1.31 Shallow geothermal energy.

1.32 Deep geothermal energy.

1.33 Regions for deep geothermal energy extraction.

1.34 Nesjavellir geothermal power station, Iceland.

1.35 The Rance Tidal Power Station, France.

2.1 James Clerk Maxwell.

2.2 Electromagnetic wave.

2.3 Derivation of Fresnel formulas.

2.4 Blackbody radiation.

2.5 Blackbody spectral irradiance.

2.6 Lenard's apparatus for studying photoelectric effect.

2.7 Louis de Broglie.

2.8 Einstein's derivation of blackbody radiation formula.

2.9 Wavelengths of visible lights.

3.1 Luminosity of the Sun.

3.2 Sir William Thomson.

3.3 The Kelvin–Helmholtz model.

3.4 Hans Albrecht Bethe.

3.5 Internal structure of the Sun.

4.1 The night sky.

4.2 Latitude and longitude.

4.3 Celestial sphere and coordinate transformation.

4.4 Coordinate transformation in Cartesian coordinates.

4.5 Obliquity and the seasons.

4.6 Apparent motion of the Sun.

4.7 Daily solar radiation energy on a vertical surface facing south.

4.8 Daily solar radiation energy on a horizontal surface.

4.9 Daily solar radiation energy on a latitude‐tilt surface.

4.10 Daily solar radiation energy on a surface with tracking.

4.11 Sidereal time and solar time.

4.12 Obliquity and equation of time.

4.13 Eccentricity of Earth's orbit: Kepler's laws.

4.14 Equation of time.

4.15 The analemma: the apparent motion of the Sun.

5.1 Absorptivity, reflectivity, and transmittivity.

5.2 Emissivity and absorptivity.

5.3 Bouguer–Lambert–Beer's law.

5.4 Attenuation of sunlight at azimuth.

5.5 Interaction of sunlight with atmosphere.

5.6 AM0 and AM1.

5.7 Insolation map of the worlda.

5.8 Derivation of the heat‐conduction equation.

5.9 Penetration of solar energy into Earth.

6.1 Joule's experiment.

6.2 Carnot cycle.

6.3 Reverse Carnot cycle.

6.4 Carnot cycle with ideal gas as the system.

6.5 Ground source heat pump.

6.6 Ground‐source heat pump: cooling mode.

6.7 Ground source heat pump: heating mode.

6.8 Heat‐exchange configurations for ground‐source heat pumps.

6.9 Vertical well in a heat pump system.

7.1 Austrian banknote with a portrait of Schrödinger.

7.2 Wavefunctions in a one‐dimensional potential well.

7.3 Energy levels in a one‐dimensional potential well.

7.4 Energy levels and wavefunctions of a harmonic oscillator.

7.5 Hydrogen atom in spherical polar coordinates.

7.6 Wavefunction of ground‐state hydrogen atom.

7.7 Wavefunctions of excited‐states of hydrogen atom.

7.8 Hydrogen wavefunctions.

7.9 Schematics of Stern‐Gerlach experiment.

7.10 Hybridwavefunctions.

7.11 Hybridwavefunctions.

7.12 Hybridwavefunctions.

7.13 Scanning tunneling microscope.

7.14 HOMO of pentacene imaged by STM.

7.15 LUMO of pentacene imaged by STM.

7.16 Concept of chemical bond.

7.17 Accuracy of the perturbation treatment of hydrogen molecular ion.

7.18 Wavefunctions outside the atomic core.

7.19 Molecular orbitals built from two‐type AOs.

7.20 Theand MOs.

7.21 TheandMOs.

7.22 Chemical bonds of seven first‐row elements.

7.23 Bloch wavefunctions.

7.24 Reciprocal space and the first Brillouin zone.

7.25 Conductor, semiconductor, and insulator.

7.26 Direct semiconductors and indirect semiconductors.

7.27 Band gaps of a number of semiconductors.

7.28 Formation of energy bands in crystalline silicon.

7.29 Condition of energy conservation.

8.1 Intrinsic semiconductors: Free electrons and holes.

8.2 The‐type semiconductor.

8.3 The ‐type semiconductor.

8.4 Unit cell in crystalline silicon.

8.5 Roles of doners and acceptors in silicon.

8.6 Formation of a ‐junction.

8.7 The depletion model of ‐junction.

8.8 Effect of bias in a ‐junction.

8.9 Current‐voltage behavior of a ‐junction.

8.10 Evolution of the efficiency of light sources.

8.11 Nobelists for the invention of blue‐light LED.

8.12 The relation between driving voltage and bandgap.

8.13 Two main methods to produce white light from LEDs.

8.14 Generating white light by blue luminescence and yellow phosphorescence.

8.15 Wavelength and lattice constant for InGa N. .

8.16 Blue‐light LED fabricated on a GaN substrate.

8.17 The first blue‐light LED built in 1972.

9.1 Interaction of radiation with semiconductors.

9.2 Direct and indirect semiconductors.

9.3 Absorption spectra of semiconductors commonly used for solar cells.

9.4 Generating voltage and current by the electron–hole pair.

9.5 Equivalent circuit of solar cell.

9.6 Generation of an electron–hole pair.

9.7 Ultimate efficiency of solar cells.

9.8 A simplified optical model of semiconductors.

9.9 Efficiency limit of solar cells.

9.10 Efficiency limit of solar cells for AM1.

9.11 The Auger recombination process.

9.12 Two‐step recombination processes.

9.13 Antireflection coatings (a) At the interface of two dielectric media, the reflection coefficient is determined by the Fresnel formula.

9.14 Matrix method for antireflection coatings.

9.15 Choice of materials for SLAR coatings.

9.16 Wavelength range of antireflection coatings.

9.17 Typical high‐efficiency silicon solar cell.

9.18 Cross section of typical solar module.

9.19 Monocrystalline solar module and polycrystalline solar module.

9.20 Typical structure of CdTe thin film solar cell.

9.21 Typical structure of CIGS thin‐film solar cell.

9.22 CIGS solar cell integrated circuit.

9.23 Multijunction tandem solar cell.

9.24 Working principle of multijunction tandem solar cells.

10.1 Chlorophyll.

10.2 Absorption spectra of chlorophyll.

10.3 ATP and ADP.

10.4 NADPH and NADP.

10.5 Key steps in the Calvin cycle.

10.6 Chloroplast.

10.7 Efficiency of photosynthesis.

10.8 Structure of dye‐sensitized solar cell.

10.9 The N3 ruthenium dye and photocurrent spectrum.

10.10 Bilayer organic solar cell.

10.11 CuPc and its absorption spectrum.

11.1 A 3000‐years‐old solar igniter.

11.2 Hot box of Horace de Saussure.

11.3 Adams solar oven.

11.4 Cast‐iron solar oven.

11.5 Spectral power density of solar radiation...

Erscheint lt. Verlag 21.2.2024
Sprache englisch
Themenwelt Technik Maschinenbau
ISBN-10 1-394-20363-2 / 1394203632
ISBN-13 978-1-394-20363-5 / 9781394203635
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
EPUBEPUB (Adobe DRM)
Größe: 66,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich